
Chapter 7 Advanced Function Instructions

 Flow Control Instructions I (FUN22) ... 7 - 1

 Arithmetical Operation Instructions (FUN23～33) .. 7-2 ~ 7-18

 Multiple Linear Conversion (FUN34) .. 7-19 ~ 7-24

 Logical Operation Instructions (FUN35～36) .. 7-25 ~ 7-26

 Comparison Instructions (FUN37) .. 7-27

 Data Movement Instructions I (FUN40～50) ... 7-28 ~ 7-38

 Shifting／Rotating Instructions (FUN51～54) ... 7-39 ~ 7-42

 Code Conversion Instructions (FUN55～64) .. 7-43 ~ 7-59

 Flow Control Instructions II (FUN65～71) .. 7-60 ~ 7-67

 I／O Instructions I (FUN74～86) ... 7-68 ~ 7-84

 Cumulative Timer Instructions (FUN87～89) ... 7-85 ~ 7-86

 Watchdog Timer Instructions (FUN90～91) ... 7-87 ~ 7-88

 High Speed Counting／Timing (FUN92～93) ... 7-89 ~ 7-90

 Report Printing Instructions (FUN94) ... 7-91 ~ 7-92

 Slow Up／Slow Down Instructions (FUN95～98) ... 7-93 ~ 7-98

 Table Instructions (FUN100～114) 7-99 ~ 7-117

 Matrix Instructions (FUN120～130) 7-118 ~ 7-129

 I／O Instructions II (FUN139) ... 7-130 ~ 7-131

 NC Positioning Instructions I (FUN140～143).............................7-132 ~ 7-135

 Enable／Disable Instructions (FUN145～146).............................7-136 ~ 7-137

 NC Positioning Instructions II (FUN147～148).............................7-138 ~ 7-139

 Communication Instructions (FUN150～151).............................7-140 ~ 7-141

 Date Movement Instructions II (FUN160～162) 7-142 ~ 7-147

 In Line Comparison Instructions (FUN170～175)……...................................7-148 ~ 7-153

 Other Instructions (FUN190)...7-154 ~ 7-155

 Floating Point Instructions (FUN200～220)7-156 ~ 7-177

Flow Control Instruction I

7-1

FUN22 P
BREAK

BREAK FROM FOR AND NEXT LOOP
（BREAK）

FUN22 P
BREAK

● When execution control〝EN〞=1 or changes from 0→1（ P instruction），it will terminate the FOR and NEXT
program loop。

● The program within the FOR and NEXT loop will be executed N times (N is assigned by FOR instruction)
successively，but if it is necessary to terminate the execution loop less than N times，the BREAK instruction
is necessary to apply。

● The BREAK instruction must be located within the FOR and NEXT program loop。

Sa :
Sb :

a=b
M200

RST V

M200

R0V

FOR D10

EN

70

EN
17.CMP

BREAKEN

(+1) VEN

NEXT
71

EN
08.MOV

15

D100
a>b
a<b

OVF

S :
D : D1000

V

Description：The loop count used to execute the FOR and NEXT program loop is assigned by register D10；the

program within the FOR and NEXT loop is designed to search the same data storing in D100 from the
register table starting at R0。If it finds，the searching loop will be terminated and then it goes to execute
the program after the NEXT instruction；If it doesn't find，the searching loop will be executed N times (N
is the content of D10) and then it goes to execute the program after the NEXT instruction。
M200 tells the status and D100 is the pointer of searching。

Arithmetical Operation Instructions

7-2

FUN 23 P
DIV48 48-BIT DIVISION

FUN 23 P
DIV48

Sa：Starting register of dividend
Sb：Starting register of divisor
D : Starting register for storing the division

result (quotient)
Sa，Sb，can combine V, Z, P0~P9 for index
addressing.

Range

Ope-
rand

HR OR SR ROR DR XR
R0
∣

R3839

R3904
∣

R3967

R3968
∣

R4167

R5000
∣

R8071

D0
∣

D4095

V、Z

P0~P9

Sa ○ ○ ○ ○ ○ ○
Sb ○ ○ ○ ○ ○ ○
D ○ ○ ○* ○* ○ ○

 When operation control “EN”=1 or changes from 0→1 (P instruction), will perform the 48 bits division operation.
Dividend and divisor are each formed by three consecutive registers starting by Sa and Sb respectively. If the
result is zero, ‘D=0’ output will be set to 1. If divisor is zero then the ‘ERR’ will be set to 1 and the resultant
register will keep unchanged.

 All operands involved in this function are all 48 bits, so Sa, Sb and D are all comprised by 3 consecutive
registers.

Example: 48-bit division

In this example dividend formed by register R2, R1, R0 will be divided by divisor formed by register R5, R4, R3. The
quotient will store in R8, R7, and R6.

 Sa
R2 R1 R0

2147483647

÷ Sb
R5 R4 R3

1234567

 R8 R7 R6
 1739

 Quotient

Arithmetical Operation Instructions

7-3

FUN 24 D P
SUM

SUM
(Summation of block data)

FUN 24 D P
SUM

S : Starting number of source register

N : Number of registers to be summed
(successive N data units starting from S)

D : The register which stored the result (summation)

S, N, D, can associate with V, Z, P0~P9 index register to
serve the indirect addressing application.

Range

Ope-
rand

WX WY WM WS TMR CTR HR IR OR SR ROR DR K XR
WX0

∣
WX240

WY0
∣

WY240

WM0
∣

WM1896

WS0
∣

WS984

T0
∣

T255

C0
∣

C255

R0
∣

R3839

R3840
∣

R3903

R3904
∣

R3967

R3968
∣

R4167

R5000
∣

R8071

D0
∣

D4095

1
∣

511

V、Z

P0~P9

S ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
N ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
D ○ ○ ○ ○ ○ ○ ○ ○* ○* ○ ○

 When operation control “EN”=1 or changes from 0→1 (P instruction), it puts the successive N units of 16bit or
32 bit (D instruction) registers for addition calculation to get the summation, and stores the result into the
register which is designated by D.

 When the value of N is 0 or greater than 511, the operation will not be performed.

 Communication port1~4 can be used to serve as a general purpose ASCII communication interface. If the
data error detecting method is Checksum, this instruction can be used to generate the sum value for sending
data or ot use this instruction to check if the received data is error or not.

〈Example 1〉When M1 changes from OFF→ON, following instruction will calculates the summation for 16-bit data.

M1
S :

N :

D :

R0

6

R100

24P.SUM

EN

 The left illustrates that 6 16-bit registers starting from R0
is calculated for summation, and the result is stored into
the R100 register.

R0=0030H
R1=0031H
R2=0032H
R3=0033H
R4=0034H
R5=0035H

〈Example 2〉When M1 is ON, it calculates the summation for 32-bit data.

S :

N :

D :

R0

3

R100

24D.SUM

EN
M1 The left illustrates that three 32-bit registers starting

from DR0, is calculated for their summation, and the
result is stored into the DR100 register.

R1，R0=00310030H
R3，R2=00330032H R101，R100=00A5009BH
R5，R4=00410039H

 R100=012FH

Arithmetical Operation Instructions

7-4

FUN 25 D P
MEAN

MEAN
(Average of the block data)

FUN 25 D P
MEAN

S : Source register number

N : Number of registers to be averaged
(N units of successive registers starting from S）

D : Register number for storing result (mean value)

The S, N, D may combine with V, Z, P0~P9 to
serve indirect address application

Range

Ope-
rand

WX WY WM WS TMR CTR HR IR OR SR ROR DR K XR
WX0

∣
WX240

WY0
∣

WY240

WM0
∣

WM1896

WS0
∣

WS984

T0
∣

T255

C0
∣

C255

R0
∣

R3839

R3840
∣

R3903

R3904
∣

R3967

R3968
∣

R4167

R5000
∣

R8071

D0
∣

D4095

2
∣

256

V、Z

P0~P9

S ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
N ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
D ○ ○ ○ ○ ○ ○ ○ ○* ○* ○ ○

 When operation control "EN" = 1 or from 0 to 1 (P instruction), add the N successive 16-bit or 32-bit (D
instruction) numerical values starting from S, and then divided by N. Store this mean value (rounding off
numbers after the decimal point) in the register specified by D.

 While the N value is derived from the content of the register, if the N value is not between 2 and 256, then the
N range error "ERR" will be set to 1, and do not execute the operation.

X0
S :

N :

D :

R 0

3

R 10

25P.MEAN
ERREN

 At left, the example program gets the mean value of the
3 successive 16-bit registers starting from R0, and stores
the results into the 16-bit register R10

S
(N＝3)

R0 123
R1 9
R2 788 123＋9＋788

 X0＝

 3
＝306 （Rouding off the remainder）

D R10 306

Arithmetical Operation Instructions

7-5

FUN 26 D P
SQRT

SQUARE ROOT
FUN 26 D P

SQRT

S : Source register to be taken square root

D : Register for storing result
(square root value)

S, D may combine with V, Z, P0~P9 to serve
indirect address application

Range

Ope-
rand

WX WY WM WS TMR CTR HR IR OR SR ROR DR K XR
WX0

∣
WX240

WY0
∣

WY240

WM0
∣

WM1896

WS0
∣

WS984

T0
∣

T255

C0
∣

C255

R0
∣

R3839

R3840
∣

R3903

R3904
∣

R3967

R3968
∣

R4167

R5000
∣

R8071

D0
∣

D4095

16/32-bit

V、Z

P0~P9

S ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
D ○ ○ ○ ○ ○ ○ ○ ○* ○* ○ ○

 When operation control "EN" = 1 or from 0 to 1 (P instruction), take the square root (rounding off numbers
after the decimal point) of the data specified by the S field, and store the result into the register specified by
D.

 While the S value is derived from the content of the register, if the value is negative, then the S value error
flag "ERR" will be set to 1, and do not execute the operation.

X0
S :

2147483647

D : R 0

26DP.SQRT
ERREN The instruction at left calculates the square root of the

constant 2147483647, and stores the result in R0.

S K 2147483647

 X0＝

D R1 R0 46340
 R1 R0

9546340.2147483647 =

 ↑

 rounding off

Arithmetical Operation Instructions

7-6

FUN 27 D P
NEG

NEGATION
(Take the negative value)

FUN 27 D P
NEG

D : Register to be negated

D may combine with V, Z, P0~P9 to serve indirect address
application

Range

Ope-
rand

WY WM WS TMR CTR HR OR SR ROR DR XR
WY0

∣
WY240

WM0
∣

WM1896

WS0
∣

WS984

T0
∣

T255

C0
∣

C255

R0
∣

R3839

R3904
∣

R3967

R3968
∣

R4167

R5000
∣

R8071

D0
∣

D4095

V、Z

P0~P9

D ○ ○ ○ ○ ○ ○ ○ ○* ○* ○ ○

 When operation control "EN" = 1 or from 0 to 1 (P instruction), negate (ie. calculate 2's complement) the
value of the content of the register specified by D, and store it back in the original D register.

 If the value of the content of D is negative, then the negation operation will make it positive.

27P
NEG R 0

X0
EN

 The instruction at left negates the value of the R0
register, and stores it back to R0.

D R0 12345 3039H

 X0＝

D R0 −12345 CFC7H

Arithmetical Operation Instructions

7-7

FUN 28 D P
ABS

ABSOLUTE
(Take the absolute value)

FUN 28 D P
ABS

D : Register to be taken absolute value

D may combine with V, Z, P0~P9 to serve indirect address
application

Range

Ope-
rand

WY WM WS TMR CTR HR OR SR ROR DR XR
WY0

∣
WY240

WM0
∣

WM1896

WS0
∣

WS984

T0
∣

T255

C0
∣

C255

R0
∣

R3839

R3904
∣

R3967

R3968
∣

R4167

R5000
∣

R8071

D0
∣

D4095

V、Z

P0~P9

D ○ ○ ○ ○ ○ ○ ○ ○* ○* ○ ○

 When operation control "EN" = 1 or from 0 to 1 (P instruction), calculate the absolute value of the content of
the register specified by D, and write it back into the original D register.

28DP
ABS R 0

X0
EN

 The instruction at left calculates the absolute value of
the R0 register, and stores it back in R0.

D R1 R0 −12345 CFC7H

 X0＝

D R1 R0 12345 3039H

Arithmetical Operation Instructions

7-8

FUN 29 D P
EXT

SIGN EXTENSION
FUN 29 D P

EXT

D : Register to be taken sign extension

D may combine with V, Z, P0~P9 to serve indirect address
application

Range

Ope-
rand

WY WM WS TMR CTR HR OR SR ROR DR XR
WY0

∣
WY240

WM0
∣

WM1896

WS0
∣

WS984

T0
∣

T255

C0
∣

C255

R0
∣

R3839

R3904
∣

R3967

R3968
∣

R4167

R5000
∣

R8071

D0
∣

D4095

V、Z

P0~P9

D ○ ○ ○ ○ ○ ○ ○ ○* ○* ○ ○

 When operation control "EN" = 1 or from 0 to 1 (P instruction), this instruction will sign extent the 16 bit
numerical value specified by D to 32-bit value and store it into the 32-bit register comprised by the two
successive words, D + 1 and D. (Both values are the same, only it was originally formated as a 16 bit
numerical value, and was then extended to be formated as a 32 bit numerical value.)

 This instruction extent the numerical value of a 16-bit register into an equivalent numerical value in a 32-bit
register (for example 33FFH converts to 000033FFH), Its main function is for numerical operations
(+,-,*,/,CMP......) which can take the 16 bit or 32 bit numerical values as operand. Before operation all the
operand should be adjusted to the same length for proper operation.

29P
EXT R 0

X0
EN

 The instruction at left takes a 16 bit numerical value R0,
and extends it to an equivalent value in 32 bits, then
stores it into a 32 bit register (DR0=R1R0) comprised R0
and R1

R1 B15 R0 B0

D R1 R0 Ignore the value of R1 before
extension

1 1 0 0 1 1 1 1 1 1 0 0 0 1 1 1 －12345

X0＝

 B31 R1 B16 B15 R 0 B0
D R1 R0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0 0 1 1 1 －12345

Fill B15 value into B31-B16,(if B15 is 0, then B31-B16 are all 0)

Before extension（16 bits） R0= CFC7H=−12345

After extension（32 bits）R1R0=FFFFCFC7H=−12345
The two numerical values are actually the same

Arithmetical Operation Instructions

7-9

FUN 30
PID

GENERAL PURPOSE PID OPERATION
(Brief description)

FUN 30
PID

Ts : PID Operation time interval

SR : Starting register of process control
parameter table comprised by 8 consecutive
registers.

OR : PID output register

PR : Starting register of the process parameter
table comprised by 7 consecutive registers.

WR : Starting register of working variable for PID
internal operation. It requires 7 registers and
can’t be re-used in other part of the ladder
program.

 PID function (FUN 30) according to the current value of process variable (PV) derived from the external
analog signal and the Set Point (SP) of process performs the calculation, which base on the PID formula. The
result of calculation is the control output for the controlled process, which can feed directly to the AO module
or other output interface or leaved for further process. The usage of PID control for process if properly can
achieve a fast and smooth result of PV tracking toward SP change or immune to the disturbance of process.

 The PID formula in digital form:

Mn = [(D4005/Pb)×En]+ ∑
0

n
 [(D4005/Pb)×Ti×Ts×En] − [(D4005/Pb)×Td×(PVn−PVn-1)/Ts] + Bias

Mn : Control output at time ”n”

D4005 : The gain constant, the default is 1000, which can be set between 1~5000.

Pb : Proportional band (range : 2~5000, unit 0.1%. Kc (gain) =1000/ Pb)

Ti : Intergal time constant (range : 0~9999 corresponds to 0.00~99.99 Repeats/Minute)

Td : Differential time constant (range : 0~9999 corresponds to 0.00~99.99 Minutes)

PVn : Process value at time ”n”

PV n-1 : Process value at time ”n”

En :Error at time ”n” =set value (SP) − process value at time ”n” (PVn)

Ts : Interval time of PID calculation (range: 1~3000, unit : 0.01 S)

Bias : Control output offset (range: 0~16380)

Range

Ope-
rand

HR ROR DR K
R0
∣

R3839

R5000
∣

R8071

D0
∣

D4095

Ts ○ ○ ○ 1～3000
SR ○ ○* ○
OR ○ ○* ○
PR ○ ○* ○
WR ○ ○* ○

Arithmetical Operation Instructions

7-10

FUN31 P
CRC16

CRC16 CALCULATION
（CRC16）

FUN31 P
 CRC16

 Range

Ope-
rand

HR ROR DR K
R0
∣

R3839

R5000
∣

R8071

D0
∣

D4095

MD 0~1
S ○ ○ ○
N ○ ○ ○ 1~256
D ○ ○* ○

MD ：0, Lower byte of registers to be calculated the
CRC16

 ：1, Reserved

S：Starting address of CRC16 calculation

N：Length of CRC16 calculation (In Byte)

D：The destination register to store the calculation of
CRC16,
Register D stores the Upper Byte of CRC16
Register D＋1 stores the Lower Byte of CRC16

S, N, D may associate with V、Z、P0~P9 index register to
serve the indirect addressing application

● When execution control "EN"=1 or changes from 0→1（P instruction, it will start the CRC16 calculation from
the lower byte of S and by the length of N, the result of calculation will be stored into register D and D+1.

● The output indication "D=0" will be ON if the value of calculation is 0.
● It will not execute the calculation and the output indication "ERR" will be ON if the length is invalid.
● When communicating with the intelligent peripheral in binary data format, the CRC16 error detection is used

very often; the well known Modbus RTU communication protocol uses this method for error detection of
message frame.

● CRC16 is the check value of a Cyclical Redundancy Check calculation performed on the message contents.
● Perform the CRC16 calculation on the received message data and error check value, the result of the

calculation value must be 0, it means no error within this message frame.

M0
EN S :

D :

D0

V

08P.MOV

EN MD:

S :

N :

0

R0

D0

31P.CRC16

D=0

ERR

D : R0V

S D

High Byte Low Byte High Byte Low Byte
R0 Don’t care Byte-0

R10 00 CRC-Hi

R1 Don’t care Byte-1 R11 00 CRC-Lo
R2 Don’t care Byte-2
R3 Don’t care Byte-3
R4 Don’t care Byte-4
R5 Don’t care Byte-5
R6 Don’t care Byte-6
R7 Don’t care Byte-7
R8 Don’t care Byte-8
R9 Don’t care Byte-9

Description：When M0 changes from 0→1, it will execute the
CRC16 calculation starting from lower byte of R0, the length is
assigned by D0, and then stores the CRC value into register
R0+V and R0+V+1.
It is supposed D0=10, the registers R10 and R11 will store the
CRC16 value.

Arithmetical Operation Instructions

7-11

FUN32
ADCNV

CONVERTING THE RAW VALUE OF 4～20MA ANALOG INPUT
（ADCNV）

FUN32
ADCNV

 Range

Ope-
rand

HR IR ROR DR K
R0
∣

R3839

R3840
∣

R3903

R5000
∣

R8071

D0
∣

D4095

Pl 0~1
S ○ ○ ○
N ○ ○ ○ ○ 1~64
D ○ ○* ○

Pl：0, the polarity setting of analog input module is at unipolar
position

：1, the polarity setting of analog input module is at bipolar
position

S：Starting address of source registers

N：Quantity of conversion (In Word)

D：Starting address of destination registers

S, N, D may associate with V、Z、P0~P9 index register to serve
the indirect addressing application.

● When the analog input is one of 2～10mA/ 4～20mA/1～5V/2～10V, the analog input module is the solution
to get the value of this kind of signal, but the input span of the analog input module is 0～10mA/0～5V
(Setting at 5V、Unipolar) or 0～20mA/0～10V(Setting at 10V、Unipolar), however there will exist the offset of
the raw reading value; this instruction is applied to eliminate the offset and convert the raw reading value
into the range of 0～4095(12-bit) or 0～16383(14-bit), it is more convenient for following operation.

● When execution control "EN"=1, it will execute the conversion starting from S, length by N, and then store
the results into the D registers.

● When the input〝F/T〞=0, it assigns the 12-bit analog input module; while〝F/T〞=1, it assigns the 14-bit
operation.

● This instruction will not act if invalid length of N.

● The reading value of the analog input must be in -2048~2047 or -8192~8191 format that the conversion will
have the correct correspondence. Otherwise, if the reading value is in 0~4095 or 0~16383 format that the
conversion will have the wrong correspondence.

Arithmetical Operation Instructions

7-12

FUN32
ADCNV

CONVERTING THE RAW VALUE OF 4～20MA ANALOG INPUT
（ADCNV）

FUN32
ADCNV

Example：

M0
EN

S :
N :
D :

R3840
6

R500
F/T

P1 : 0

M1

32.ADCNV

Description：When M0 is ON and M1 is OFF, it will perform 6 points of conversion starting from R3840, where

the offset of 4～20mA raw reading value will be eliminated, and the corresponding value 0～4095
will be stored into R500～R505.

 S D

R3840 －1229

R500 0 (4 mA)
R3841 409 R501 2047 (12 mA)
R3842 2047 R502 4095 (20 mA)
R3843 －2048 R503 0 (0 mA)
R3844 －2048 R504 0 (0 mA)
R3845 －2048 R505 0 (0 mA)

When M0 is ON and M1 is ON, it will perform 6 points of conversion starting from R3840, where the
offset of 4~20mA raw reading value will be eliminated, and the corresponding value 0~16383 will be
stored into R500~R505.

 S D

R3840 －4916

R500 0 (4 mA)
R3841 1637 R501 8191 (12 mA)
R3842 8191 R502 16383 (20 mA)
R3843 －8192 R503 0 (0 mA)
R3844 －8192 R504 0 (0 mA)
R3845 －8192 R505 0 (0 mA)

Arithmetical Operation Instructions

7-13

FUN33 P
LCNV

Linear Conversion
（LCNV）

FUN33 P
LCNV

Md :

Ts :

ENOperation control

33P.LCNV

S :

L :

D :

Ladder symbol

 Md：Operation mode，0～3

 S ：Starting address of the source data

 Ts：Starting address of the parameter table for conversion

 D ：Starting address to store the result

 L ：Quantity of conversion entry，1～64

Range

Operand

HR IR ROR DR K
R0
∣

R3839

R3840
∣

R3903

R5000
∣

R8071

D0
∣

D3999

Md 0～3
S ○ ○ ○ ○
Ts ○ ○ ○
D ○ ○* ○
L ○ ○ ○ 1～64

● When the analog input module being used for the analog measurement, the raw reading value of
the analog input can be converted into the engineering range through this instruction for display
or for proceeding control operation.

● For process measurement calibration, making the linear conversion for the engineering process
variable, which the measurement value from the PLC's can be corrected by the value from the
standard meter's through this instruction.

● When execution control "EN"=1or from 0→1(P instruction), this instruction will perform the linear
conversion operation according to the mode selection, where S is the starting address of the
source data, Ts is the starting address of the conversion parameter table, D is the starting
address to store the converted result, and L is the quantity of conversion entry.

● There are two expressions to meet the suitable application:

 Expression 1 : Two points calibration method

Fill the conversion parameter table with the low value of measurement(VML), high value of
measurement(VMH), and the corresponding low value of standard (VSL), high value of
standard(VSH); the converted result(Dn) will be generated from the source data(Sn) through the
formula shown below:

A = (VSL－VSH／VML－VMH)×10000

B = VSL－(VML×A／10000)
Dn = (Sn×A／10000)＋B

 ‧The range of operands VSL,VSH,

VML,VMH,Sn and Dn are between
-32768 ~ 32767

 ‧For analog input scaling, where
VML=Minmum of analog input
VMH=Maximum of analog input
VSL=Minmum of engineering range
VSH=Maximum of engineering range

Arithmetical Operation Instructions

7-14

FUN33 P
LCNV

Linear Conversion
（LCNV）

FUN33 P
LCNV

 Expression 2 : Multiplicator＋Offset method

 Fill the conversion parameter table with the values of multiplier(A), divisor(B) and offset(C);
 The converted result(Dn) will be generated from the source data(Sn) through the formula shown

below:

Dn =[(Sn×A)／B]＋C

The range of each operand as below:
A = 1 ～ 65535

B = 1 ～ 65535

C = -32768 ～ 32767

Sn = 0 ～ 65535

Dn = -32768 ～ 32767

 Description of operation mode :

 1. When Md = 0, the linear conversion works by expression 1, and all source data share the same
parameters VML、VMH、VSL and VSH for conversion.

 2. When Md = 1, the linear conversion works by expression 1, and each source data has the independent
corresponding parameters VML、VMH、VSL、VSH for conversion; if there are N entries of source data, the
conversion parameter table should have N groups of VML、VMH、VSL、VSH for working, there are N×4 registers
in the conversion parameter table.

 3. When Md = 2, the linear conversion works by expression 2, and all source data share the same
parameters A、B and C for conversion.

 4. When Md = 3, the linear conversion works by expression 2, and each source data has the independent
corresponding parameters A、B、C for conversion; if there are N entries of source data, the conversion
parameter table should have N groups of A、B、C for working, there are N×3 registers in the conversion
parameter table.

B
A

Arithmetical Operation Instructions

7-15

FUN33 P
LCNV

Linear Conversion
（LCNV）

FUN33 P
LCNV

 Example program 1 : Mode 0 of linear conversion

Description : When M0 = 1, it will perform the mode 0 operation of linear conversion, where R100 is the starting

address of the source data, R1000 is the starting address of the table of the conversion parameters
VML、VMH、VSL、VSH, the quantity is 6, and R2000～R2005 will store the converted results.

 Ts

 R1000
R1001
R1002
R1003

 282
 3530
 260

 3650

 S D
R100 282

R2000 260

 R101 3530 R2001 3650

R102 1906 R2002 1955

R103 0 R2003 -34

R104 5000 R2004 5184

R105 -115 R2005 -154

VML

VMH

VSL

VSH

Arithmetical Operation Instructions

7-16

FUN33 P
LCNV

Linear Conversion
（LCNV）

FUN33 P
LCNV

 Example program 2 : Mode 1 of linear conversion

Description : When M0 = 1, it will perform the mode 1 operation of linear conversion, where R100 is the starting
address of the source data, R1000 is the starting address of the table of the conversion parameters
VML、VMH、VSL、VSH, the quantity is 3, and R2000～R2002 will store the converted results.

 Ts

R1000
R1001
R1002
R1003
R1004
R1005
R1006
R1007
R1008
R1009
R1010
R1011

 282
 3530
 260

 3650
 -52

 1208
 -38

 1101
 235

 4563
 264

 4588

 S D
R100 282

R2000 260

 R101 1208 R2001 1101

R102 2399 R2002 2426

VML_0

VMH_0

VSL_0

VSH_0

VML_1

VMH_1

VSL_1

VSH_1

VML_2

VMH_2

VSL_2

VSH_2

Arithmetical Operation Instructions

7-17

FUN33 P
LCNV

Linear Conversion
（LCNV）

FUN33 P
LCNV

 Example program 3 : Mode 2 of linear conversion

Description : When M0 = 1, it will perform the mode 2 operation of linear conversion, where R100 is the starting
address of the source data, R1000 is the starting address of the table of the conversion parameters
A、B、C, the quantity is 6, and R2000～R2005 will store the converted results.

 Ts

R1000
R1001
R1002

 985
 1000

 20

 S D

R100 1000

R2000 1005
 R101 2345 R2001 2330

R102 3560 R2002 3527
R103 401 R2003 415
R104 568 R2004 579
R105 2680 R2005 2660

A

B

C

Arithmetical Operation Instructions

7-18

FUN33 P
LCNV

Linear Conversion
（LCNV）

FUN33 P
LCNV

 Example program 4 : Mode 3 of linear conversion

Description : When M0 = 1, it will perform the mode 3 operation of linear conversion, where R100 is the starting
address of the source data, R1000 is the starting address of the table of the conversion parameters
A、B、C, the quantity is 4, and R2000～R2003 will store the converted results.

Ts

 R1000
R1001
R1002
R1003
R1004
R1005
R1006
R1007
R1008
R1009
R1010
R1011

 5000
 16380

 0
 10000
 16383

 0
 2200
 16380
 -200

 1600
 16383
 -100

 S D

 R100 8192

R2000 2501
R101 16383 R2001 10000

 R102 8190 R2002 900
R103 0 R2003 -100

Multiple Linear Conversion

7-19

FUN34 P
MLC

Multiple Linear Conversion
(MLC)

FUN34 P
MLC

 34P. MLC

 EN Rs : OVR

 Sl :

 Selection X/Y Tx :

 Ty :

 Tl :

 D :

 Rs：Starting address of the source data
 Sl ：Quantity of source data, 1~64
 Tx ：Starting address of X table
 Ty ：Starting address of Y table
 Tl ：Quantity of table, 2~255

D ：Starting address to store the result

Range

Operand

HR IR ROR DR K
R0
∣

R3839

R3840
∣

R3903

R5000
∣

R8071

D0
∣

D3999

Rs ○ ○ ○ ○
Sl ○ ○ ○ 1~64
Tx ○ ○ ○
Ty ○ ○* ○
Tl ○ ○ ○ 2～255
D ○ ○ ○

● When the analog input module being used for the analog measurement, the raw reading value of
the analog input can be converted into the engineering range through this instruction for display
or for proceeding control operation.

● For process measurement calibration, making the linear conversion for the engineering process
variable, which the measurement value from the PLC's can be corrected by the value from the
standard meter's through this instruction.

● When execution control "EN"=1or from 0→1(P instruction), this instruction will perform the
multiple linear conversion operation according to the selection of X/Y input; where Rs is the
starting address of the source data, Sl is the quantity of source data for conversion, Tx is the
starting address of X conversion parameter table, Ty is the starting address of Y conversion
parameter table, Tl is the quantity of X/Y table, D is the starting address to store the converted
result.

● When executing and selection X/Y=0, it will compare the source data with the entities of Tx table
to find the corresponding location in Tx table (The entities in Tx table must be in ascending
sequence), and then calculate the linear conversion according to the located section of Tx and
Ty table;
When executing and selection X/Y=1, it will compare the source data with the entities of Ty table
to find the corresponding location in Ty table (The entities in Ty table can either be in ascending
or descending sequence), and then calculate the linear conversion according to the located
section of Ty and Tx table.

● When the source data is out of all entities of table, OVR=1.

● It wouldn’t execute this instruction if illegal SI or Tl.

Execution
Control

Multiple Linear Conversion

7-20

 FUN34 P
MLC

Multiple Linear Conversion
(MLC)

FUN34 P
MLC

Expression:

﹒The entities of Tx conversion parameter table must be in ascending sequence to have correct
linear conversion; the entities of Ty conversion parameter table can either be in ascending or
descending sequence. When executing this instruction, it will search the located section by
comparing entities of the table with source data, and then calculate the linear conversion
according to the following expression:

Vy = (Vx－Tx_n) × (Ty_n+1－Ty_n／Tx_n+1－Tx_n) ＋ Ty_n if X/Y=0

Vx = (Vy－Ty_n) × (Tx_n+1－Tx_n／Ty_n+1－Ty_n) ＋ Tx_n if X/Y=1

.Value of Vy、Vx、Tx_n、Tx_n+1、Ty_n、Ty_n+1 must be -32768～32767

 Figure of multiple linear conversion:

(T x - 0 , T y - 0)

(T x - 1 , T y - 1)

(T x - 2 , T y - 2)

(T x - 3 , T y - 3)

(T x - n , T y - n)

Multiple Linear Conversion

7-21

FUN34 P
MLC

Multiple Linear Conversion
(MLC)

FUN34 P
MLC

 Example 1：

Description：When M10=1、M11=0, R0 is the starting address of source data、R99 is the quantity of

source data, R1000 is the starting address of Tx conversion parameter table, R2000 is the
starting address of Ty conversion parameter table、R199 is the quantity of table; the source
data R0~R5 will be calculated the linear conversion according to Tx and Ty table between
four sections, then store the results into D0～D5.

Y

X

2000,280

4000,530

6000,760

8000,970

2000 4000 6000 8000

280

530

760

970

0,0

Multiple Linear Conversion

7-22

FUN34 P
MLC

Multiple Linear Conversion
(MLC)

FUN34 P
MLC

 Example 2：

Description：When M10=1、M11=0, R0 is the starting address of source data、R99 is the quantity of

source data, R1000 is the starting address of Tx conversion parameter table, R2000 is the
starting address of Ty conversion parameter table、R199 is the quantity of table; the source
data R0~R5 will be calculated the linear conversion according to Tx and Ty table between
five sections, then store the results into D0～D5.The result value is 280 if source data ≦
2000; the result value is 970 if source data ≧ 8000.

Y

X

2000,280

4000,530

6000,760

8000,970

2000 4000 6000 8000

280

530

760

970

0,0

Multiple Linear Conversion

7-23

FUN34 P
MLC

Multiple Linear Conversion
(MLC)

FUN34 P
MLC

 Example 3：

Description：When M10=1、M11=0, R0 is the starting address of source data、R99 is the quantity of
source data, R1000 is the starting address of Tx conversion parameter table, R2000 is the
starting address of Ty conversion parameter table、R199 is the quantity of table; the source
data R0~R5 will be calculated the linear conversion according to Tx and Ty table between
three sections, then store the results into D0～D5.The result value is -100 if source data ≦
-8000; the result value is 2000 if source data ≧ 8000.

0,950

X

Y
8000,2000

-8000,-100

2000

-100

8000-8000

Multiple Linear Conversion

7-24

FUN34 P
MLC

Multiple Linear Conversion
(MLC)

FUN34 P
MLC

 Example 4：

Description：When M10=1、M11=0, R0 is the starting address of source data、R99 is the quantity of

source data, R1000 is the starting address of Tx conversion parameter table, R2000 is the
starting address of Ty conversion parameter table、R199 is the quantity of table; the source
data R0~R5 will be calculated the linear conversion according to Tx and Ty table between
three sections, then store the results into D0～D5.The result value is 0 if source data ≦

3276; the result value is 5000 if source data ≧ 16000.

X

Y
16000,5000

3276,0

16000

5000

0,0

Logical Operation Instructions

7 -25

FUN 35 D P
XOR

EXCLUSIVE OR
FUN 35 D P

XOR

Sa : Source data a for exclusive or operation

Sb : Source data b for exclusive or operation

D : Register storing XOR results

Sa, Sb, D may combine with V, Z, P0~P9 to
serve indirect address application

Range

Ope-
rand

WX WY WM WS TMR CTR HR IR OR SR ROR DR K XR
WX0
∣

WX240

WY0
∣

WY240

WM0
∣

WM1896

WS0
∣

WS984

T0
∣

T255

C0
∣

C255

R0
∣

R3839

R3840
∣

R3903

R3904
∣

R3967

R3968
∣

R4167

R5000
∣

R8071

D0
∣

D4095

16/32bit
+/-

number

V、Z

P0~P9

Sa ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
Sb ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
D ○ ○ ○ ○ ○ ○ ○ ○* ○* ○ ○

 When operation control "EN" = 1 or changes from 0 to 1 (P instruction), will perform the logical XOR
(exclusive or) operation of data Sa and Sb. The operation of this function is to compare the corresponding
bits of Sa and Sb (B0~B15 or B0~B31), and if bits at the same position have different status, then set the
corresponding bit within D as 1, otherwise as 0.

 After the operation, if all the bits in D are all 0, then set the 0 flag "D = 0" to 1.

X0
Sa :

Sb :

D :

R 0

R 2

35P.XOR
D=0

R 1

EN

 The instruction at left makes a logical XOR operation
using the R0 and R1 registers, and stores the result
in R2.

Sa R0 1 0 1 1 1 0 1 1 0 1 1 0 1 1 0 1
Sb R1 1 1 1 0 1 1 1 0 1 0 1 0 0 1 1 0

X0＝

D R2 0 1 0 1 0 1 0 1 1 1 0 0 1 0 1 1

Logical Operation Instructions

7-26

FUN 36 D P
XNR

EXCLUSIVE NOR
FUN 36 D P

XNR

Sa : Data a for XNR operation

Sb : Data b for XNR operation

D : Register storing XNR results

Sa, Sb, D may combine with V, Z, P0~P9 to serve
indirect address application

Range

Ope-
rand

WX WY WM WS TMR CTR HR IR OR SR ROR DR K XR
WX0
∣

WX240

WY0
∣

WY240

WM0
∣

WM1896

WS0
∣

WS984

T0
∣

T255

C0
∣

C255

R0
∣

R3839

R3840
∣

R3903

R3904
∣

R3967

R3968
∣

R4167

R5000
∣

R8071

D0
∣

D4095

16/32-bit
± number

V、Z

P0~P9

Sa ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
Sb ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
D ○ ○ ○ ○ ○ ○ ○ ○* ○* ○ ○

● When operation control "EN" = 1 or changes from 0 to 1 (P instruction), will perform the logical XNR
(inclusive or) operation of data Sa and Sb. The operation of this function is to compare the corresponding
bits of Sa and Sb (B0~B15 or B1~B31), and if the bit has the same value, then set the corresponding bit
within D as 1. If not then set it to 0.

● After the operation, if the bits in D are all 0, then set the 0 flag "D=0" to 1.

X0
Sa :

Sb :

D :

R 0

R 2

36P.XNR
D=0

R 1

EN

 The instruction at left makes a logical XNR operation
of the R0 and R1 registers, and the results are stored
in the R2 register.

Sa R0 1 0 1 1 1 0 1 1 0 1 1 0 1 1 0 1
Sb R1 1 1 1 0 1 1 1 0 1 0 1 0 0 1 1 0

X0＝

D R2 1 0 1 0 1 0 1 0 0 0 1 1 0 1 0 0

Comparison Instructions

7-27

FUN 37 D P
ZNCMP

ZONE COMPARE
FUN 37 D P

ZNCMP

S : Register for zone comparison

SU : The upper limit value

SL : The lower limit value

S, SU, SL may combine with V, Z,
P0~P9 to serve indirect address
application

Range

Ope-
rand

WX WY WM WS TMR CTR HR IR OR SR ROR DR K XR
WX0
∣

WX240

WY0
∣

WY240

WM0
∣

WM1896

WS0
∣

WS984

T0
∣

T255

C0
∣

C255

R0
∣

R3839

R3840
∣

R3903

R3904
∣

R3967

R3968
∣

R4167

R5000
∣

R8071

D0
∣

D4095

16/32-bit
+/-

number

V、Z

P0~P9

S ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
SU ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
SL ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

 When operation control "EN" = 1 or changes from 0 to 1 (P instruction), compares S with upper limit SU
and lower limit SL. If S is between the upper limit and the lower limit (SL≦S≦SU), then set the inside zone
flag "INZ" to 1. If the value of S is greater than the upper limit SU, then set the higher than upper limit flag
"S>U" to 1. If the value of S is smaller then the lower limit SL, then set the lower than lower limit flag "S<L"
as 1.

 The upper limit SU should be greater than the lower limit SL. If SU<SL, then the limit value error flag "ERR"
will set to 1, and this instruction will not carry out.

X0
S :

SU :

R

R

0

1

37P.ZNCMP

INZ

S>U

S<L

Y0

SL : R 2

ERR

EN

 The instruction at left compares the value of R0 with the
upper and lower limit zones formed by R1 and R2. If the
values of R0~R2 are as shown in the diagram at bottom
left, then the result can then be obtained as at the right
of this diagram.

 If want to get the status of out side the zone, then OUT
NOT Y0 may be used, or an OR operation between the
two outputs S>U and S<L may be carried out, and move
the result to Y0.

S R0 200

Y0
 1

SU R1 300 （Upper limit value） X0＝
SL

R2 100
（Lower limit value）

Before-execution

 Results of execution

Data Movement Instructions I

7-28

FUN 40 D P
BITRD

BIT READ
FUN 40 D P

BITRD

S :ENOperation control

Ladder symbol
40DP.BITRD

N :

OBT Output bit

ERR N value error

S : Source data to be read

N : The bit number of the S data to be read out.

S, N may combine with V, Z, P0~P9 to serve
indirect address application

Range

Ope-
rand

WX WY WM WS TMR CTR HR IR OR SR ROR DR K XR
WX0

∣
WX240

WY0
∣

WY240

WM0
∣

WM1896

WS0
∣

WS984

T0
∣

T255

C0
∣

C255

R0
∣

R3839

R3840
∣

R3903

R3904
∣

R3967

R3968
∣

R4167

R5000
∣

R8071

D0
∣

D4095

16/32-bit
+/- number

V、Z

P0~P9

S ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
N ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 0～31 ○

 When read control "EN" = 1 or changes from 0 to 1 (P instruction), take the Nth bit of the S data out , and
put it to the output bit "OTB".

 When read control "EN" = 0, the output “OTB” can be selected to keep at the last state (if M1919=0) or
set to zero (if M1919=1).

 When the operand is 16 bit, the effective range for N is 0~15. For 32 bit operand (D instruction) it is 0~31.
N beyond this range will set the N value error flag "ERR" to 1, and do not carry out this instruction.

X0
S :

N : 7

WX 0

40P.BITRD

OTB
Y0

ERR
EN

 The instruction at left reads the 7th bit (X7) status from
WX0 (X0~X15) and output to Y0. The results are as
follows:

 X15 X7 X0
S WX0 1 1 0 0 1 1 1 0 1 0 0 1 1 0 0 1

 N＝7────────── X0＝

Y0 1

Data Movement Instructions I

7-29

FUN 41 D P
BITWR

BIT WRITE
FUN 41 D P

BITWR

D : Register for bit write

N : The bit number of the D register to be
written.

D, N may combine with V, Z , P0~P9 to serve
indirect address application

Range

Ope-
rand

WX WY WM WS TMR CTR HR IR OR SR ROR DR K XR
WX0

∣
WX240

WY0
∣

WY240

WM0
∣

WM1896

WS0
∣

WS984

T0
∣

T255

C0
∣

C255

R0
∣

R3839

R3840
∣

R3903

R3904
∣

R3967

R3968
∣

R4167

R5000
∣

R8071

D0
∣

D4095

0 0
∣ or ∣
15 31

V、Z

P0~P9
D ○ ○ ○ ○ ○ ○ ○ ○* ○* ○ ○
N ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

 When write control "EN" = 1 or changes from 0 to 1 (P instruction), will write the write bit (INB) into the Nth
bit of register D.

 When the operand is 16 bit, the effective range of N is 0~15. For 32 bit (D instruction) operand it is 0~31. N
beyond this range, will set the N value error flag "ERR" to 1, and do not carry out this instruction.

X0
D :

N : 3

R 0

41P.BITWR

ERR
X1

INB

EN The instruction at left writes the status of the write bit
INB into B3 of R0. Assuming
X1 = 1, the result will be as follows:

X1 1

N＝3───────────── X0＝

D R0 1
 B15 B3 B0
 Bits other than B3 remain unchanged

Data Movement Instructions I

7-30

FUN 42 D P
BITMV

BIT MOVE
FUN 42 D P

BITMV

S : Source data to be moved

Ns : Assign Ns bit within S as source bit

D : Destination register to be moved

Nd : Assign Nd bit within D as target bit

S, Ns, D, Nd may combine with V, Z, P0~P9 to
serve indirect address application

Range

Ope-
rand

WX WY WM WS TMR CTR HR IR OR SR ROR DR K XR
WX0

∣
WX240

WY0
∣

WY240

WM0
∣

WM1896

WS0
∣

WS984

T0
∣

T255

C0
∣

C255

R0
∣

R3839

R3840
∣

R3903

R3904
∣

R3967

R3968
∣

R4167

R5000
∣

R8071

D0
∣

D4095

16/32-bit
+/- number

V、Z

P0~P9

S ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
Ns ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 0～31 ○
D ○ ○ ○ ○ ○ ○ ○ ○* ○* ○ ○

Nd ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 0～31 ○

 When move control "EN" = 1 or changes from 0 to 1 (P instruction), will move the bit status specified by Ns
within S into the bit specified by Nd within D.

 When the operand is 16 bit, the effective range of N is 0~15. For 32 bit (D instruction) operand the effective
range is 0~31. N beyond this range will set the N value error flag "ERR" to 1, and do not carry out this
instruction.

X0
S :

Ns : 11

WX 0

42P.BITMV

ERR

D :

Nd : 7

R 0

EN

 The instruction at left moves the status of B11 (X11)
within S into the B7 position within D. Except bit B7,
other bits within D does not change.

 X15 X11 X0
S WX0 1

 Ns＝11─────

 X0＝

 Nd＝7 ────────

D R0 1
 B15 B7 B0

Data Movement Instructions I

7-31

FUN 43 D P
NBMV

NIBBLE MOVE
FUN 43 D P

NBMV

S : Source data to be moved

Ns: Assign Ns nibble within S as source nibble

D : Destination register to be moved

Nd: Assign Nd nibble within D as target nibble

S, Ns, D, Nd may combine with V, Z, P0~P9 to
serve indirect address application

Range

Ope-
rand

WX WY WM WS TMR CTR HR IR OR SR ROR DR K XR
WX0

∣
WX240

WY0
∣

WY240

WM0
∣

WM1896

WS0
∣

WS984

T0
∣

T255

C0
∣

C255

R0
∣

R3839

R3840
∣

R3903

R3904
∣

R3967

R3968
∣

R4167

R5000
∣

R8071

D0
∣

D4095

16/32-bit
+/-

number

V、Z

P0~P9
S ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

Ns ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 0～7 ○
D ○ ○ ○ ○ ○ ○ ○ ○* ○* ○ ○

Nd ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 0～7 ○

 When move control "EN" = 1 or has a transition from 0 to 1 (P instruction), will move the Ns’th nibble from
within S to the nibble specified by Nd within D. (A nibble is comprised by 4 bits. Starting from the lowest bit of
the register, B0, each successive 4 bits form a nibble, so B0~B3 form nibble 0, B4~B7 form nibble 1, etc...)

 When the operand is 16 bit, the effective range of Ns or Nd is 0~3. For 32 bit (D instruction) operand the
range is 0~7. Beyond this range, will set the N value error flag "ERR" to 1 , and do not carry out this
instruction.

X0
S :

Ns : 2

R 0

43P.NBMV

ERR

D :

Nd : 1
R 1

EN
 The instruction at left moves the third nibble NB2
(B8~B11) within S to the first nibble NB1 (B4~B7) within
D. Other nibbles within D remain unchanged.

 B15 B0
S R0 1 1 0 1

 NB3 NB2 NB1 NB0

 Ns＝2 ───────

 X0＝

 Nd＝1 ─────────

 NB3 NB2 NB1 NB0

D R1 1 1 0 1
 B15 B0

Data Movement Instructions I

7-32

FUN 44 D P
BYMV

BYTE MOVE
FUN 44 D P

BYMV

S :

D :

ENMove control

Ladder symbol
44DP.BYMV

Ns :
ERR N value error

Nd :

S : Source data to be moved

Ns : Assign Ns byte within S as source byte

D : Destination register to be moved

Nd : Assign Nd byte within D as target byte

S, Ns, D, Nd may combine with V, Z, P0~P9 to
serve indirect address application

Range

Ope-
rand

WX WY WM WS TMR CTR HR IR OR SR ROR DR K XR
WX0

∣
WX240

WY0
∣

WY240

WM0
∣

WM1896

WS0
∣

WS984

T0
∣

T255

C0
∣

C255

R0
∣

R3839

R3840
∣

R3903

R3904
∣

R3967

R3968
∣

R4167

R5000
∣

R8071

D0
∣

D4095

16/32-bit
+/- number

V、Z

P0~P9
S ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

Ns ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 0～3 ○
D ○ ○ ○ ○ ○ ○ ○ ○* ○* ○ ○

Nd ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 0～3 ○

 When move control "EN" = 1 or has a transition from 0 to 1 (P instruction), move Nsth byte within S to Ndth
byte position within D. (A byte is comprised of 8 bits. Starting from the lowest bit of the register, B0, each
successive eight bits form a byte, so B0~B7 form byte 0, B8~B15 form byte 1, etc...)

 When the operand is 16 bit, the effective range of Ns or Nd is 0~1. For 32 bit (D instruction) operand, the
range is 0~3. Beyond this range, will set the N value error flag "ERR" to 1, and do not carry out this
instruction.

X0
S :

Ns : 2

R 0

44DP.BYMV

ERR

D :

Nd : 1
R 2

EN

 The instruction at left moves the third byte (B16~B23)
within S (32 bit register composed of R1R0), to the first
byte within D (32 bit register composed of R3R2). Other
bytes within D remain unchanged.

 B15 B0
S R1 R0 1 0 1 1 1 0 1 1

 Byte3 Byte2 Byte1 Byte0

 Ns＝2──────────────

 X0＝

 Nd＝1────────────────────

 Byte3 Byte2 Byte1 Byte0

D R3 R2 1 0 1 1 1 0 1 1
 B31 B0

Data Movement Instructions I

7-33

FUN 45 D P
XCHG

EXCHANGE
FUN 45 D P

XCHG

Da : Register a to be exchanged

Db : Register b to be exchanged

Da, Db may combine with V, Z, P0~P9 to serve indirect
address application

Range

Ope-
rand

WY WM WS TMR CTR HR OR SR ROR DR XR
WY0

∣
WY240

WM0
∣

WM1896

WS0
∣

WS984

T0
∣

T255

C0
∣

C255

R0
∣

R3839

R3904
∣

R3967

R3968
∣

R4167

R5000
∣

R8071

D0
∣

D4095

V、Z

P0~P9

Da ○ ○ ○ ○ ○ ○ ○ ○* ○* ○ ○
Db ○ ○ ○ ○ ○ ○ ○ ○* ○* ○ ○

 When exchange control "EN" = 1 or has a transition from 0 to 1 (P instruction), will exchanges the contents
of register Da and register Db in 16 bits or 32 bits (D instruction) format.

X0
Da : R 0

45P.XCHG

Db : R 1
EN

 The instruction at left exchanges the contents of the
16-bit R0 and R1 registers.

 B15 B0
Da R0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Db R1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

X0＝

 B15 B0
Da R0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Db R1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Data Movement Instructions I

7-34

FUN 46 P
SWAP

BYTE SWAP
FUN 46 P

SWAP

D : Register for byte data swap

D may combine with V, Z, P0~P9 to serve indirect address
application

Range

Ope-
rand

WY WM WS TMR CTR HR OR SR ROR DR XR
WY0

∣
WY240

WM0
∣

WM1896

WS0
∣

WS984

T0
∣

T255

C0
∣

C255

R0
∣

R3839

R3904
∣

R3967

R3968
∣

R4167

R5000
∣

R8071

D0
∣

D4095

V、Z

P0~P9

D ○ ○ ○ ○ ○ ○ ○ ○* ○* ○ ○

 When swap control "EN" = 1 or has a transition from 0 to 1 (P instruction), swap the data of the low byte,
Byte 0 (B0~B7), and the high byte, Byte 1 (B8~B15), in the 16 bit register specified by D.

B15 B8 B7 B0
Byte 1（high） Byte 0（low）

46P
SWAP R 0

X0
EN

 The instruction at left swaps the data of the low byte
(B0~B7) and the high byte (B8~B15) in R0. The results
are as follows:

 Byte1 Byte0

D R0 0 0 1 1 0 0 1 1 1 1 1 1 0 0 0 0
 B15 B8 B7 B0

X0＝

 B15 B0
D R0 1 1 1 1 0 0 0 0 0 0 1 1 0 0 1 1

Data Movement Instructions I

7-35

FUN 47 P
UNIT

NIBBLE UNITE
FUN 47 P

UNIT

S : Starting source register to be united

N : Number of nibbles to be united

D : Registers storing united data

S, N, D may combine with V, Z, P0~P9 to serve
indirect address application

Range

Ope-
rand

WX WY WM WS TMR CTR HR IR OR SR ROR DR K XR
WX0

∣
WX240

WY0
∣

WY240

WM0
∣

WM1896

WS0
∣

WS984

T0
∣

T255

C0
∣

C255

R0
∣

R3839

R3840
∣

R3903

R3904
∣

R3967

R3968
∣

R4167

R5000
∣

R8071

D0
∣

D4095

1
∣
4

V、Z

P0~P9

S ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
N ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
D ○ ○ ○ ○ ○ ○ ○ ○* ○* ○ ○

 When unite control "EN" = 1 or has a transition from 0 to 1 (P instruction), take out the lowest nibbles NB0,
of N successive registers starting from S, and fill them into NB0, NB1,NBn-1 of D in ascending order.
Nibbles not yet filled in D (when N is odd) are filled with 0. (A nibble is comprised by 4 bits. Starting from
the lowest bit in the register, B0, each successive four bits form a nibble, so B0~B3 form nibble 0, B4~B7
form nibble 1, etc...).

 This instruction only provides WORD (16 bit) operand. Because of this, there are usually only 4 nibbles can
be involved. Therefore the effective range of N is 1~4. Beyond this range, will set the N value error flag
"ERR" to 1, and do not carry out this instruction.

X0
S :

N : 3

R 0
47P.UNIT

ERR

D : WY 0

EN

 The instruction at left takes out NB0 from 3 registers, R0,
R1 and R2, and fills them into NB0~NB2 within WY0
register.

 N＝3

 NB3 NB2 NB1 NB0
D W Y 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

 Y15 Y0
 Set the not united NB as 0
 B15 B12 B11 B8 B7 B4 B3 B0

 S R0 0 0 0 1
N＝3 S＋1 R1 0 0 1 0
 S＋2 R2 0 1 0 0

 NB3 NB2 NB1 NB0 X0＝

Data Movement Instructions I

7-36

FUN 48 P
DIST

NIBBLE DISTRIBUTE
FUN 48 P

DIST

S : Source data to be distributed

N : Number of nibbles to be distributed

D : Starting register storing distribution data

S, N, D may combine with V, Z, P0~P9 to
serve indirect address application

Range

Ope-
rand

WX WY WM WS TMR CTR HR IR OR SR ROR DR K XR
WX0

∣
WX240

WY0
∣

WY240

WM0
∣

WM1896

WS0
∣

WS984

T0
∣

T255

C0
∣

C255

R0
∣

R3839

R3840
∣

R3903

R3904
∣

R3967

R3968
∣

R4167

R5000
∣

R8071

D0
∣

D4095

16-bit
+/-

number

V、Z

P0~P9

S ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
N ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 1~4 ○
D ○ ○ ○ ○ ○ ○ ○ ○* ○* ○ ○

 When distribution control "EN" = 1 or has a transition from 0 to 1(P instruction), will take N successive
nibbles starting from the lowest nibble NB0 within S, and distribute them in ascending order into the 0
nibbles of N registers starting from D. The nibbles other than NB0 in each of the registers within D are all set
to zero. (A nibble is comprised by 4 bits. Starting from the lowest bit in a register, B0, each successive 4 bits
form a nibble, so B0~B3 form nibble 0, B4~B7 form nibble 1, etc...)

 This instruction only provides WORD (16 bit) operand. Therefore there are usually only 4 nibbles can be
involved, so the effective value of N is 1~4. Beyond this range, will set the N value error flag "ERR" to 1, and
do not carry out this instruction.

X0
S :

N : 3

R 0

48P.DIST
ERR

D :

WY 0EN

 The instruction at left writes NB0~NB2 from the WX0
register into the NB0 of the 3 consecutive registers
R0~R2.

 N=3 NB3 NB2 NB1 NB0
 X15 X11 X0 B15 B0

S WX0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 D R0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
 NB3 NB2 NB1 NB0 D+1 R1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
 D+2 R2 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

NB1～NB3 are all set a "0 "
 X0＝

Data Movement Instructions I

7-37

FUN49 P
BUNIT

BYTE UNITE
FUN49 P

BUNIT

S ：Starting address of source register to be united

N ：Number of bytes to be united

D ：Registers to store the united data

S, N, D may associate with V、Z、P0~P9 index register to
serve the indirect addressing application

Range

Ope-
rand

HR ROR DR K
R0
∣

R3839

R5000
∣

R8071

D0
∣

D4095

S ○ ○ ○
N ○ ○ ○ 1~256
D ○ ○* ○

● When execution control "EN"=1 or changes from 0→1 P instruction, it will perform the byte combination
starting from S, length by N, and then store the results into D registers.

● This instruction will not act if invalid range of length.

● When communicating with intelligent peripheral in binary data format, this instruction may be applied to do
byte combination for following word data processing.

Example：

M2
S :

N : R 999

R 1500
49P.BUNIT

D : R 2500

EN

Description：When M2 changes from 0→1, it will perform the byte combination starting from R1500, the length is
assigned by R999, and then store the results into registers starting from R2500.
It is supposed R999=10, the results of combination will store into R2500～R2504.

 S D
 High Byte Low Byte High Byte Low Byte

R1500 Don’t care Byte-0 R2500 Byte-0 Byte-1
R1501 Don’t care Byte-1 R2501 Byte-2 Byte-3
R1502 Don’t care Byte-2 R2502 Byte-4 Byte-5
R1503 Don’t care Byte-3 R2503 Byte-6 Byte-7
R1504 Don’t care Byte-4 R2504 Byte-8 Byte-9
R1505 Don’t care Byte-5
R1506 Don’t care Byte-6
R1507 Don’t care Byte-7
R1508 Don’t care Byte-8
R1509 Don’t care Byte-9

Data Movement Instructions I

7-38

FUN50 P
BDIST

BYTE DISTRIBUTE
FUN50 P

BDIST

S ：Starting address of source register to be distributed

N ：Number of bytes to be distributed

D ：Registers to store the distributed data

S, N, D may associate with V、Z、P0~P9 index register to serve
the indirect addressing application.

Range

Ope-
rand

HR ROR DR K
R0
∣

R3839

R5000
∣

R8071

D0
∣

D4095

S ○ ○ ○
N ○ ○ ○ 1~256
D ○ ○* ○

● When execution control "EN" =1 or changes from 0→1（ P instruction）, it will perform the byte distribution
starting from S, length by N, and then store the results into D registers.

● This instruction will not act if invalid range of length.

● When communicating with intelligent peripheral in binary data format, this instruction may be applied to do
byte distribution for data transmission。

Example：

M2
S :

N : R 999

R 1000
50P.BDIST

D : R 1500

EN

Description：When M2 changes from 0→1, it will perform the byte distribution starting from R1000, the length is
assigned by R999, and then store the results into registers starting from R1500.
It is supposed R999=9, the results of distribution will store into R1500～R1508.

 S D
 High Byte Low Byte High Byte Low Byte

R1000 Byte-0 Byte-1

R1500 00 Byte-0
R1001 Byte-2 Byte-3 R1501 00 Byte-1
R1002 Byte-4 Byte-5 R1502 00 Byte-2
R1003 Byte-6 Byte-7 R1503 00 Byte-3
R1004 Byte-8 Don’t care R1504 00 Byte-4

 R1505 00 Byte-5
 R1506 00 Byte-6
 R1507 00 Byte-7
 R1508 00 Byte-8

Shifting/Rotating Instructions

7 -39

 FUN 51 D P
SHFL

SHIFT LEFT
FUN 51 D P

SHFL

D : Register to be shifted

N : Number of bits to be shifted

N, D may combine with V, Z, P0~P9 to serve
indirect address application

Range

Ope-
rand

WX WY WM WS TMR CTR HR IR OR SR ROR DR K XR
WX0
∣

WX240

WY0
∣

WY240

WM0
∣

WM1896

WS0
∣

WS984

T0
∣

T255

C0
∣

C255

R0
∣

R3839

R3840
∣

R3903

R3904
∣

R3967

R3968
∣

R4167

R5000
∣

R8071

D0
∣

D4095

1 1
∣ or ∣
16 32

V、Z

P0~P9

D ○ ○ ○ ○ ○ ○ ○ ○* ○* ○ ○
N ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

 When shift control "EN" = 1 or has a transition from 0 to 1(P instruction), will shift the data of the D register
towards the left by N successive bits (in ascending order). After the lowest bit B0 has been shifted left, its
position will be replaced by shift-in bit INB, while the status of shift-out bits B15 or B31 (D instruction) will
appear at shift-out bit "OTB".

 If the operand is 16 bit, the effective range of N is 1~16. For 32 bits (D instruction) operand, it is 1~32.
Beyond this range, will set the N value error flag "ERR" to 1, and do not carry out this instruction.

X0
D :

N : 4

R 0

51P.SHFL

OTB
Y0

ERRINB

EN
 The instruction at left shifts the data in register R0

towards the left by 4 successive bits. The results are
shown below.

 Y0 B15 R0 B0 INB
 ← 0 0 1 1 0 0 1 0 1 1 1 1 0 0 0 0 ← 1
 * △

X0＝

 Y0 B15 R0 B0 INB
1 0 0 1 0 1 1 1 1 0 0 0 0 1 1 1 1 1
* △ △ △ △ △

Shifting/Rotating Instructions

7-40

FUN 52 D P
SHFR

SHIFT RIGHT
FUN 52 D P

SHFR

D : Register to be shifted

N : Number of bits to be shifted

D, N may combine with V, Z, P0~P9 to serve
indirect address application

Range

Ope-
rand

WX WY WM WS TMR CTR HR IR OR SR ROR DR K XR
WX0
∣

WX240

WY0
∣

WY240

WM0
∣

WM1896

WS0
∣

WS984

T0
∣

T255

C0
∣

C255

R0
∣

R3839

R3840
∣

R3903

R3904
∣

R3967

R3968
∣

R4167

R5000
∣

R8071

D0
∣

D4095

1 1
∣ or ∣
16 32

V、Z

P0~P9

D ○ ○ ○ ○ ○ ○ ○ ○* ○* ○ ○
N ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

 When shift control "EN" = 1 or has a transition from 0 to 1 (P instruction), will shift the data of D register
towards the right by N successive bits (in descending order). After the highest bits, B15 or B31 (D
instruction) have been shifted right, their positions will be replaced by the shift-in bit INB, while shift-out bit
B0 will appear at shift-out bit "OTB".

 If the operand is 16 bit, the effective range of N is 1~16. For 32 bits (D instruction) operand, it is 1~32.
Beyond this range, will set the N value error flag "ERR" to 1, and do not carry out this instruction.

X0
D :

N : 15

R 0

52P.SHFR

OTB
Y0

ERRINB

EN

 The instruction at left shifts the data in R0 register
towards the right by 15 successive bits. The
results are shown below.

 INB B15 R0 B0 Y0
0 → 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 →
△ *

X0＝

 INB B15 R0 B0 Y0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
△ △ △ △ △ △ △ △ △ △ △ △ △ △ △ △ *

Shifting/Rotating Instructions

7 -41

FUN 53 D P
ROTL

ROTATE LEFT
FUN 53 D P

ROTL

D : Register to be rotated

N : Number of bits to be rotated

D, N may combine with V, Z , P0~P9 to serve
indirect address application

Range

Ope-
rand

WX WY WM WS TMR CTR HR IR OR SR ROR DR K XR
WX0
∣

WX240

WY0
∣

WY240

WM0
∣

WM1896

WS0
∣

WS984

T0
∣

T255

C0
∣

C255

R0
∣

R3839

R3840
∣

R3903

R3904
∣

R3967

R3968
∣

R4167

R5000
∣

R8071

D0
∣

D4095

1 1
∣ or ∣
16 32

V、Z

P0~P9

D ○ ○ ○ ○ ○ ○ ○ ○* ○* ○ ○
N ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

 When rotate control "EN" = 1 or has a transition from 0 to 1 (P instruction), will rotate the data of D register
towards the left by N successive bits (in ascending order, ie. in a 16-bit instruction, B0→B1, B1→B2, ,
B14→B15, B15→B0. In a 32-bit instruction, B0→B1, B1→B2, , B30→B31, B31→B0). At the same time,
the status of the rotated out bits B15 or B31 (D instruction) will appear at rotate-out bit "OTB".

 If the operand is 16 bit, the effective range of N is 1~16. For 32 bits (D instruction) operand, it is 1~32.
Beyond this range, will set the N value error flag "ERR" to 1, and do not carry out this instruction.

X0
D :

N : 9

R 0

53P.ROTL

OTB
Y0

ERR

EN

 The instruction at left rotates data from the R0
register towards the left 9 successive bits. The
results are shown below.

 R0 B0
1 1 1 1 0 0 0 0 1 0 1 0 1 0 1 0

 *

 Y0
X0＝

 B15 R0 B0
0 1 0 1 0 1 0 1 1 1 1 0 0 0 0 1

 *

1 Y0

*

Shifting/Rotating Instructions

7-42

FUN 54 D P
ROTR

ROTATE RIGHT
FUN 54 D P

ROTR

D : Register to be rotated

N : Number of bits to be rotated

D, N may combine with V, Z, P0~P9 to serve
indirect address application

Range

Ope-
rand

WX WY WM WS TMR CTR HR IR OR SR ROR DR K XR
WX0
∣

WX240

WY0
∣

WY240

WM0
∣

WM1896

WS0
∣

WS984

T0
∣

T255

C0
∣

C255

R0
∣

R3839

R3840
∣

R3903

R3904
∣

R3967

R3968
∣

R4167

R5000
∣

R8071

D0
∣

D4095

1 1
∣ or ∣
16 32

V、Z

P0~P9

D ○ ○ ○ ○ ○ ○ ○ ○* ○* ○ ○
N ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

 When rotate control "EN" = 1 or has a transition from 0 to 1(P instruction), will rotate the bit data of D
register towards the right by N successive bits (in descending order, ie. in a 16-bit instruction, B15→B14,
B14→B13, , B1→B0, B0→B15. In a 32-bit instruction, B31→B30, B30→B29, , B1→B0, B0→B31). At
the same time, the status of the rotated out B0 bits will appear at the rotate-out bit "OTB".

 If the operand is 16 bit, the effective range of N is 1~16. For 32 bits (D instruction) operand, it is 1~32.
Beyond this range, will set the N value error flag "ERR" to 1, and do not carry out this instruction.

X0
D :

N : 8

R 0

54P.ROTR

OTB
Y0

ERR

EN

 The instruction at left rotates data from R0 register
towards the right 8 successive bits. The results are
shown below.

 B15 R0 B0

1 1 1 1 0 0 0 0 1 0 1 0 1 0 1 0
 *

 Y0
X0＝

 B15 R0 B0
1 0 1 0 1 0 1 0 1 1 1 1 0 0 0 0
*

 Y0 1
 *

Code Conversion Instructions

7-43

FUN55 D P
B→G

BINARY-CODE TO GRAY-CODE CONVERSION
FUN55 D P

B→G

S ：Starting of source

D ：Starting address of destination

S，D operand can combine V、Z、P0~P9 for
index addressing

Range

Ope-
rand

WX WY WM WS TMR CTR HR IR OR SR ROR DR K XR
WX0

∣
WX240

WY0
∣

WY240

WM0
∣

WM1896

WS0
∣

WS984

T0
∣

T255

C0
∣

C255

R0
∣

R3839

R3840
∣

R3903

R3904
∣

R3967

R3968
∣

R4167

R5000
∣

R8071

D0
∣

D4095

16/32-bit
+/- number

V、Z

P0~P9

S ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
D ○ ○ ○ ○ ○ ○ ○ ○* ○* ○ ○

● When operation control "EN"=1 or changes from 0→1(P instruction), it will perform the code conversion;
where S is the source (Binary code), and D is the destination (Gray code) for storing the result.

● The conversion method shown as below

Example 1: When M0 changes from 0→1, it will perform the 16-bit code conversion

M0
S :

D : R100

R0

55P.B G

EN

․Converting the 16-bit Binary-code in R0 into
 Gray-code, and then storing the result into R100.

R0＝1001010101010011B R100＝1101111111111010B

Code Conversion Instructions

7-44

FUN55 D P
B→G

BINARY-CODE TO GRAY-CODE CONVERSION
FUN55 D P

B→G

Example 2: When M0 =1, it will perform the 32-bit code conversion

S :

D : R100

R0
M0

EN

55DP.B G

․Converting the 32-bit Binary-code in DR0 into
 Gray-code, and then storing the result into DR100.

DR0＝00110111001001000010111100010100B DR100＝ 00101100101101100011100010011110B

Code Conversion Instructions

7-45

FUN56 D P
G→B

GRAY-CODE TO BINARY-CODE CONVERSION
FUN56 D P

G→B

S :ENOperation control

Ladder symbol

56DP.G B

D :

S ：Starting of source

D ：Starting address of destination

S ， D operand can combine V 、 Z 、 P0~P9 for index
addressing

Range

Ope-
rand

WX WY WM WS TMR CTR HR IR OR SR ROR DR K XR
WX0

∣
WX240

WY0
∣

WY240

WM0
∣

WM1896

WS0
∣

WS984

T0
∣

T255

C0
∣

C255

R0
∣

R3839

R3840
∣

R3903

R3904
∣

R3967

R3968
∣

R4167

R5000
∣

R8071

D0
∣

D4095

16/32-bit
+/- number

V、Z

P0~P9

S ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
D ○ ○ ○ ○ ○ ○ ○ ○* ○* ○ ○

● When operation control "EN"=1 or changes from 0→1 (P instruction), it will perform the code conversion;
where S is the source (Gray code), and D is the destination (Binary code) for storing the result.

● The conversion method shown as below :

1 10 1 00 0 1 1 1 0 1 1 0 1

1 011 1 11 1 0 1 0 0 1 0 0 1

0

XOR
XOR

XOR
XOR

XOR
XOR

XOR
XOR

XOR
XOR

XOR
XOR

XOR
XOR

XOR

Example 1: When M0 changes from 0→1, it will perform the 16-bit code conversion

M0
S :

D : D100

D0

56P.G B

EN

˙Converting the 16-bit Gray-code in D0 into Binary-code,

and then storing the result into D100.

D0＝1001010101010011B D100＝1110011001100010B

Code Conversion Instructions

7-46

FUN56 D P
G→B

GRAY-CODE TO BINARY-CODE CONVERSION
FUN56 D P

G→B

Example 2: When M0 =1, it will perform the 32-bit code conversion

S :

D :

M0
EN D0

D100

56DP.G B

˙Converting the 32-bit Gray-code in DD0 into Binary-code,
 and then storing the result into DD100.

DD0＝00110111001001000010111100010100B DD100＝ 00100101110001111100101000011000B

Code Conversion Instructions

7-47

FUN 57 P
DECOD

DECODE
FUN 57 P
DECOD

S : Source data register to be decoded
(16 bits)

NS : Starting bits to be decoded within S

NL : Length of decoded value (1~8 bits)

D : Starting register storing decoded results
(2~256 points = 1~16 words)

S, NS, NL, D may combine with V, Z, P0~P9
to serve indirect address application

Range

Ope-
rand

WX WY WM WS TMR CTR HR IR OR SR ROR DR K XR

WX0
∣

WX240

WY0
∣

WY240

WM0
∣

WM1896

WS0
∣

WS984

T0
∣

T255

C0
∣

C255

R0
∣

R3839

R3840
∣

R3903

R3904
∣

R3967

R3968
∣

R4167

R5000
∣

R8071

D0
∣

D4095

16/32-bit
+/- number

V、Z

P0~P9

S ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
NS ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 0～15 ○
NL ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 2～256 ○
D ○ ○ ○ ○ ○ ○ ○ ○* ○* ○ ○

● This instruction, will set a single bit among the total of 2NL discrete points (D) to 1 and the others bit are set to

0. The bit number to be set to 1 is specified by the value comprised by BNS～BNS+NL−1 of S（which is called
the decode value, BNS is the starting bit of the decode value, and BNS+NL−1 is the end value）.

● When decode control "EN" = 1 or has a transition from 0 to 1 (P instruction), will take out the value BNS～

BNS+NL−1 from S. And with this value to locate the bit position and set D accordingly, and set all the other bit
to zero

● This instruction only provides 16 bit operand, which means S only has B0~B15. Therefore the effective range
of Ns is 0~15, and the NL length of the decode value is limited to 1~8 bits. Therefore the width of the decoded
result D is 21～8 points = 2~256 points = 1~16 words (if 16 points are not sufficient, 1 word is still occupied). If
the value of NS or NL is beyond the above range, will set the range-error flag "ERR" to 1, and do not carry out
this instruction.

● If the end bit value exceeds the B15 of S, then will extend toward B0 of S + 1. However if this occurs then
S+1 can’t exceed the range of specific type of operand (ie. If S is of D type register then S+1 can’t be D3072).
If violate this, then this instruction only takes out the bits from starting bit BNs to its highest limit as the decode
value.

X0
S :
Ns : 3

R 2

57P.DECOD
ERR

D :

WX 0

NL : 5

EN
 The instruction at left takes out the data of five

successive bits from X3 to X7 within the WX0
register and decodes it. The results are then stored
in the 32-bit register starting at R2.

 X15 X7 X3 X0
 S 0 0 1 1 0 0 0 0 0 1 0 0 1 1 1 0

Length of decode value NL=5,so bit value is formed by X7~X3 (equal 9)

X0＝
 R3 R2

D 0 1 0 0 0 0 0 0 0 0 0
 B31 B9 B0

Because NL=5,the width of D is 25= 32 point = 2 word. That is, D is formed by R3R2, and the decoded value is
01001=9, therefore B9 (the 10th point) within D is set to 1, and all other points are 0.

Code Conversion Instructions

7-48

FUN 58 P
ENCOD

ENCODE
FUN 58 P
ENCOD

S : Starting register to be encoded

NS : Bit position within S as the encoding start
point

NL : Number of encoding discrete points (2~256)

D : Number of register storing encoding results
 (1 word)

S, NS, NL, D may combine with V, Z, P0~P9 to
serve indirect address application

Range

Ope-
rand

WX WY WM WS TMR CTR HR IR OR SR ROR DR K XR

WX0
∣

WX240

WY0
∣

WY240

WM0
∣

WM1896

WS0
∣

WS984

T0
∣

T255

C0
∣

C255

R0
∣

R3839

R3840
∣

R3903

R3904
∣

R3967

R3968
∣

R4167

R5000
∣

R8071

D0
∣

D4095

16-bit
+/-

number

V、Z

P0~P9

S ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
NS ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 0～15 ○
NL ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 2～256 ○
D ○ ○ ○ ○ ○ ○ ○ ○* ○* ○ ○

● When encode control "EN" = 1 or has a transition from 0 to 1 (P instruction), will starting from the points
specified by Ns within S, take out towards the left (high position direction) NL number of successive bits BNS～

BNS+NL−1 (BNS is called the encoding start point, and its relative bit number is b0;BNS+NL−1 is called the
encoding end point, and its relative bit number is BNL-1). From left to right do higher priority (when H/L=1)
encoding or from right to left do lower priority (when H/L=0) encoding (i.e. seek the first bit with the value of 1,
and the relative bit number of this point will be stored into the low byte (B0~B7) of encoded resultant register
D, and the high byte of D will be filled with 0.

 （bNL−1） （bH） （bL） （b0）← Relative bit number
 BNS＋NL−1 BNS
 ↓ B15 ↓ B1 B0

← …Direction of extension… 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 S

 High Total NL discrete points Low

High priority search direction Low priority search direction

D 0 0 0 0 0 0 0 0 H or L

● As shown in the diagram above, for high priority encoding, the bit first to find is bH (with a value of 12), and for
low priority encoding, the bit first to find bL (with a value of 4). Among the NL discrete points there must be at
least one bit with value of 1. If all bits are 0, will not to carry out this instruction, and the all zero flag "D=0" will
set to 1.

● Because S is a 16-bit register, Ns can be 0~15, and is used to assign a point of B0~B15 within S as the
encoding start point (b0). The value of NL can be 2~256, and it is used to identify the encoding end point, i.e. it
assigns NL successive single points starting from the start point (b0) towards the left (high position direction)
as the encoding zone (i.e. b0～bNL−1). If the value of Ns or NL exceeds the above value, then do not carry out
this instruction, and set the range-error flag "ERR" as 1.

Code Conversion Instructions

7-49

FUN 58 P
ENCOD

ENCODE
FUN 58 P
ENCOD

● If the encoding end point (bNL−1) beyond the B15 of S, then continue extending towards S+1, S+2, but it must
not exceed the range of specific type of operand. If it goes beyond this, then this instruction can only take the
discrete points between b0 and the highest limit into account for encoding.

X0
S :
Ns : 9

WY 0

58P.ENCOD
D=0

D :

R 0

NL : 36H/L ERR

EN

 The instruction at left is a high priority encode example.
When X0 goes from 0 to 1, will take out toward left 36
successive bits starting from B9 (b0) specified by Ns
within S, and perform high priority encoding (because
H/L = 1). That is, starting from b35 (encoding end point),
move right to find the first bit with the value of 1. The
resultant value of this example is b26, so the value of D
is 001AH=26, as shown in the diagram below.

 S D
 (b0)
 B15 B9 B0

R0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
X0＝

Y15 Y0

R1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 WY0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0
R2 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0

 B47 B44
（b35） ↑

（b26）
B32 High byte always

fill with "0"
＝26

（encode value）

The first bit with the value of 1
for high priority encoding

Code Conversion Instructions

7-50

FUN 59 P
→7SG

7-SEGMENT CONVERSION
FUN 59 P

→7SG

S : Source data to be converted

N : The nibble number within S for conversion

D : Register storing 7-segment result

S, N, D may combine with V, Z,P0~P9 to serve
indirect address application

Range

Ope-
rand

WX WY WM WS TMR CTR HR IR OR SR ROR DR K XR
WX0

∣
WX240

WY0
∣

WY240

WM0
∣

WM1896

WS0
∣

WS984

T0
∣

T255

C0
∣

C255

R0
∣

R3839

R3840
∣

R3903

R3904
∣

R3967

R3968
∣

R4167

R5000
∣

R8071

D0
∣

D4095

16-bit
+/-

number

V、Z

P0~P9

S ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
N ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 0～3 ○
D ○ ○ ○ ○ ○ ○ ○ ○* ○* ○ ○

● When conversion control "EN" = 1 or has a transition from 0 to 1 (P instruction), will convert N+1 number of
nibbles (A nibble is comprised by 4 successive bits, so B0~B3 of S form nibble 0, B4~B7 form nibble 1,
etc...)within S to 7-segment code, and store the code into a low byte of D (High bytes does not change).
The 7 segment within D are put in sequence, with "a" segment placed at B6, "b" segment at B5, ,"g"
segment at B0. B7 is not used and is fixed as 0. For details please refer the "7-segment code and display
pattern table".

● Because this instruction is limited to 16 bits, and S only has 4 nibbles (NB0~NB3), the effective range of N
is 0~3. Beyond this range, will set the N value flag error "ERR" to 1, and does not carry out this instruction.

● Care should be taken on total nibbles to be converted is N+1. N=0 means one digit to convert, N=1 means
two digits to convert etc…

● When using the FATEK 7-segment expansion module(FBs-7SGxx) and the FUN84 (7SEG) handy
instruction for mixing decoding and non-decoding application, FUN59 and FUN84 can be combined to
simplify the program design.

Code Conversion Instructions

7-51

FUN 59 P
→7SG

7-SEGMENT CONVERSION
FUN 59 P

→7SG

〈Example 1〉When M1 OFF→ON, convert hexadecimal to 7-Segment

M1
S :

N : 0

R0
59P. 7SG

D : R100

ERREN

․Figure left shown the conversion of first digit(nibble) of
R0 to 7-segment and store in low byte of R100, the
high byte of R100 remain unchanged.

 Original R100＝0000H
 R0＝0001H R100＝0030H（1）

〈Example 2〉When M1 ON, convert the hexadecimal to 7-Segment

M1
EN S :

N : 1

R0
59. 7SG

D : R100

ERR

․Instruction at left will convert the first and the second
digit of R0 to 7-segment and store in R100.

․The low byte of R100 stores first digit.
․The high byte of R100 stores second digit.

 R0＝0056H R100＝5B5FH（56）

〈Example 3〉When M1 ON, converting hexadecimal to 7-Segment

M1
EN S :

N :

R0
59. 7SG

D : R100

ERR

2

․Instruction at left will convert the first, second and third
digit of R0 to 7-segment and store in R100 and R101.

․The low byte of R100 stores first digit.
․The high byte of R100 stores second digit.
․The low byte of R101 stores third digit.
․The high byte of R10 remain unchanged.

 Original R101=0000H
 R0=0A48H R100=337FH（48）
 R101=0077H（A）

〈Example 4〉When M1 ON, convert hexadecimal to 7-Segment

M1
EN S :

N : 3

R0
59. 7SG

D : R100

ERR

․Instruction at left will convert 1~4 digit of R0 to
7-segment and store in R100 and R101.

․The low byte of R100 stores first digit.
․The high byte of R100 stores second digit.
․The low byte of R101 stores third digit.
․The high byte of R10 stores 4th digit.

 R0=2790H R100=7B7EH（90）
 R101=6D72H（27）

Code Conversion Instructions

7-52

FUN 59 P
→7SG

7-SEGMENT CONVERSION
FUN 59 P

→7SG

Nibble data of S
7-segment

display format

Low byte of D
Display
pattern Hexadecimal

number
Binary

number
B7 B6

a
B5
b

B4
c

B3
d

B2
e

B1
f

B0
g

0 0000

B1

B2

B6

B5

B4

B0

B3
B7

P

a

f

e c

g

b

d

0 1 1 1 1 1 1 0

1 0001 0 0 1 1 0 0 0 0

2 0010 0 1 1 0 1 1 0 1

3 0011 0 1 1 1 1 0 0 1

4 0100 0 0 1 1 0 0 1 1

5 0101 0 1 0 1 1 0 1 1

6 0110 0 1 0 1 1 1 1 1

7 0111 0 1 1 1 0 0 1 0

8 1000 0 1 1 1 1 1 1 1

9 1001 0 1 1 1 1 0 1 1

A 1010 0 1 1 1 0 1 1 1

B 1011 0 0 0 1 1 1 1 1

C 1100 0 1 0 0 1 1 1 0

D 1101 0 0 1 1 1 1 0 1

E 1110 0 1 0 0 1 1 1 1

F 1111 0 1 0 0 0 1 1 1

7-segment display pattern table

Code Conversion Instructions

7-53

FUN 60 P
→ASC

ASCII CONVERSION
FUN 60 P

→ASC

S : Alphanumerics to be converted into ASCII code

D : Starting register storing ASCII results

Range

Ope-
rand

WY WM WS TMR CTR HR OR SR ROR DR Alphanumeric
WY0

∣
WY240

WM0
∣

WM1896

WS0
∣

WS984

T0
∣

T255

C0
∣

C255

R0
∣

R3839

R3904
∣

R3967

R3968
∣

R4167

R5000
∣

R8071

D0
∣

D4095

1～12
alphanumeric

S ○
D ○ ○ ○ ○ ○ ○ ○ ○* ○* ○

● When conversion control "EN" = 1 or has a transition from 0 to 1 (P instruction), will convert alphabets and
numbers stored in S (S has a maximum of 12 alphanumeric character) into ASCII and store it into registers
starting from D. Each 2 alphanumeric characters occupy one 16-bit register.

● The application of this instruction, most often, stores alphanumeric information within a program, and waits
until certain conditions occur, then converts this alphanumeric information into ASCII and conveys it to
external display devices which can accept ASCII code.

X0
S : ABCDEF
60P. ASC

D : R0

ERREN

 The instruction at left converts the 6 alphabets
-ABCDEF into ASCII then stores it into 3 successive
registers starting from R0.

 S D
 High Byte Low Byte

Alphabet
ABCDEF

X0＝

R0 42（B） 41（A）

R1 44（D） 43（C）

R2 46（F） 45（E）

Code Conversion Instructions

7-54

FUN 61 P
→SEC

HOUR:MINUTE:SECOND TO SECONDS CONVERSION
FUN 61 P

→SEC

S : Starting calendar data register to be
converted

D : Starting register storing results

Range

Ope-
rand

WX WY WM WS TMR CTR HR IR OR SR ROR DR K
WX0

∣
WX240

WY0
∣

WY240

WM0
∣

WM1896

WS0
∣

WS984

T0
∣

T255

C0
∣

C255

R0
∣

R3839

R3840
∣

R3903

R3904
∣

R3967

R3968
∣

R4167

R5000
∣

R8071

D0
∣

D4095

－117968399
∣

117964799

S ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
D ○ ○ ○ ○ ○ ○ ○ ○* ○* ○

 When conversion control "EN" = 1 or has a transition from 0 to 1 (P instruction), will convert the hour: minute:
second data of S~S+2 into an equivalent value in seconds and store it into the 32-bit register formed by
combining D and D+1. If the result = 0, then set the "D = 0" flag as 1.

 Among the FBs-PLC instructions, the hour: minute: second time related instructions (FUN61 and 62) use 3
words of register to store the time data, as shown in the diagram below. The first word is the second register,
the second word is the minute register, and finally the third word is the hour register, and in the 16 bits of
each register, only B14~B0 are used to represent the time value. While bit B15 is used to express whether
the time values are positive or negative. When B15 is 0, it represents a positive time value, and when B15
is 1 it represents a negative time value. The B14~B0 time value is represented in binary, and when the time
value is negative, B14~B0 is represented with the 2's complement. The number of seconds that results from
this operation is the result of summation of seconds from the three registers representing hours: minutes:
seconds.

 B15 B14 B0 B15 B0
S (sec) －32768 sec～32767 sec D the sec. value.

S＋1 (min) －32768 min～32767 min D＋1
S＋2 (hr) －32768 hr～32767 hr B31 B30 B16

 ↑ ↑ B31 is used to represent the positive or
The B15 of each registers is used to represent the sign of each time value └ negative nature of the sec. value

 Besides FUN61 or 62 instruction which treat hour: minute: second registers as an integral data, other
instructions treat it as individual registers.

 The example program at below converts the hour: minute: second data formed by R20~R22 into their
equivalent value in seconds then stored in the 32-bit register formed by R50~R51. The results are shown
below.

X0
S : R 20
61P. SEC

D : R 50

D=0EN

R20 0E11H ＝3601 sec
S R21 FD2FH ＝−721 min

R22 03F3H ＝1011 hr

X0＝

D
R50 EE45H

＝3599941 sec
R51 0036H

Code Conversion Instructions

7-55

FUN 62 P
→HMS

SECOND→HOUR：MINUTE：SECOND
FUN 62 P

→HMS

S :Starting register of second to be converted

D :Starting register storing result of
conversion (hour : minute : second)

Range

Ope-
rand

WX WY WM WS TMR CTR HR IR OR SR ROR DR K
WX0

∣
WX240

WY0
∣

WY240

WM0
∣

WM1896

WS0
∣

WS984

T0
∣

T255

C0
∣

C255

R0
∣

R3839

R3840
∣

R3903

R3904
∣

R3967

R3968
∣

R4167

R5000
∣

R8071

D0
∣

D4095

－117968399
∣

117964799

S ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
D ○ ○ ○ ○ ○ ○ ○ ○* ○* ○

 When conversion control "EN" = 1 or has a transition from 0 to 1 (P instruction), will convert the second data
from the S~S+1 32-bit register into the equivalent hour : minute : second time value and store it in the three
successive registers D~D+2. All the data in this instruction is represented in binary (if there is a negative
value it is represented using the 2's complement.)

 B15 B0 B15 B0
S Second D (sec) －59 sec～59 sec
S＋1 D＋1 (min) －59 min～59 min

 B31 B16 D＋2 (hr) －32768 hr～32767 hr
↑

The bit B31 of the second
register is used as the sign
bit of the second value.

 ↑
The bits B15 of each register are used as
the sign bit of the hour : minute : second
value.

 As shown in the diagram above, after convert to hour : minute : second value, the minute : second value can
only be in the range of -59 to 59, and the hour number can be in the range of -32768 to 32767 hours.
Because of this, the maximum limit of D is -32768 hours, -59 minutes, -59 seconds to 32767 hours, 59
minutes, 59 seconds, the corresponding second value of S which is in the range of -117968399 to
117964799 seconds. If the S value exceeds this range, this instruction cannot be carried out, and will set the
over range flag "OVR" to 1. If S = 0 then result is 0 flag "D = 0" will be set to 1.

 The program in the diagram below is an example of this instruction. Please note that the content of the
registers are denoted by hexadecimal, and on the right is its equivalent value in decimal notation.

X0
S : R 0
62P. HMS

D : R 10

D=0

OVR

EN

R0 5D17H
 6315287 sec

R1 0060H

X0＝

R10 002FH 47 sec
R11 000EH 14 min
R12 06DAH 1754 hr

Code Conversion Instructions

7-56

FUN 63 P
→HEX

CONVERSION OF ASCII CODE TO HEXADECIMAL VALUE
FUN 63 P

→HEX

S : Starting source register.

N : Number of ASCII codes to be converted to
hexadecimal values.

D : The starting register that stores the result
(hexadecimal value).

S, N, D, can associate with V, Z, P0~P9 to do the
indirect addressing application.

Range

Ope-
rand

WX WY WM WS TMR CTR HR IR OR SR ROR DR K XR
WX0

∣
WX240

WY0
∣

WY240

WM0
∣

WM1896

WS0
∣

WS984

T0
∣

T255

C0
∣

C255

R0
∣

R3839

R3840
∣

R3903

R3904
∣

R3967

R3968
∣

R4167

R5000
∣

R8071

D0
∣

D4095

16-bit
+number

V、Z

P0~P9
S ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
N ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 1～511 ○
D ○ ○ ○ ○ ○ ○ ○ ○* ○* ○ ○

 When conversion control “EN” =1 or changes from 0→1(P instruction), it will convert the N successive
hexadecimal ASCII character(‘0’~’9’,’A’~’F’) convey by 16 bit registers (Low Byte is effective) into
hexadecimal value, and store the result into the register starting with D. Every 4 ASCII code is stored in one
register. The nibbles of register, which does not involve in the conversion of ASCII code will remain
unchanged.

 The conversion will not be performed when N is 0 or greater than 511.

 When there is ASCII error (neither 30H～39H nor 41H～46H), the output “ERR” is ON.

 The main purpose of this instruction is to convert the hexadecimal ASCII character (‘0’~’9’,’A’~’F’), which is
received by communication port1 or communication port2 from the external ASCII peripherals, to the
hexadecimal values that the CPU can process directly.

Code Conversion Instructions

7-57

FUN 63 P
→HEX

CONVERSION OF ASCII CODE TO HEXADECIMAL VALUE
FUN 63 P

→HEX

〈Example 1〉When M1 from OFF→ON, ASCII code converted to hexadecimal value.

M1
S :

N : 1

R0
63P. HEX

D : R100

EN

․Converts the ASCII code of R0 into hexadecimal
value and store to nibble0 (nibble1~nibble3 remain
unchanged) of R100

 Originally R100＝0000H
 R0＝0039H（9） R100＝0009H

〈Example 2〉When M1 is ON, ASCII code converted to hexadecimal value.

M1
EN S :

N : 2

R0
63. HEX

D : R100

․ Converts the ASCII code of R0 and R1 into
hexadecimal value and store to low byte (high byte
remain unchanged) of R100

 R0＝0039H（9） Originally R100＝0000H
 R1＝0041H（A） R100＝009AH

〈Example 3〉When M1 is ON, ASCII code converted to hexadecimal value.

M1
EN S :

N :

R0
63. HEX

D : R100

3

․ Converts the ASCII code of R0 and R1 into

hexadecimal value and store result into R100 (nibble
3 remain unchanged)

 R0＝0039H （9） Originally R100＝0000H
 R1＝0041H （A）
 R2＝0045H （E） R100＝09AEH

〈Example 4〉When M1 is ON, ASCII code converted to hexadecimal value.

M1
EN S :

N :

R0
63. HEX

D : R100

6

․Converts the ASCII code of R0~R5 into hexadecimal
value and store it to R100~R101

 R0＝0031H（1） Originally R100＝0000H
 R1＝0032H（2） R101＝0000H
 R2＝0033H（3）
 R3＝0034H（4）
 R4＝0035H（5） R100＝3456H
 R5＝0036H（6） R101＝0012H

Code Conversion Instructions

7-58

FUN 64 P
→ASCII

CONVERSION OF HEXADECIMAL VALUE TO ASCII CODE
FUN 64 P
→ASCII

S : Starting source register
N : Number of hexadecimal digit to be converted to

ASCII code.
D : The starting register storing result.
S, N, D, can associate with V, Z, P0~P9 to do the
indirect addressing application.

Range

Ope-
rand

WX WY WM WS TMR CTR HR IR OR SR ROR DR K XR
WX0

∣
WX240

WY0
∣

WY240

WM0
∣

WM1896

WS0
∣

WS984

T0
∣

T255

C0
∣

C255

R0
∣

R3839

R3840
∣

R3903

R3904
∣

R3967

R3968
∣

R4167

R5000
∣

R8071

D0
∣

D4095

16-bit
+ number

V、Z

P0~P9

S ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
N ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 1~511 ○
D ○ ○ ○ ○ ○ ○ ○ ○* ○* ○ ○

 When conversion control “EN” =1 or changes from 0→1(P instruction), will convert the N successive
nibbles of hexadecimal value in registers start from S into ASCII code, and store the result to low byte (high
byte remain unchanged) of the registers which start from D.

 The conversion will not be performed when the value of N is 0 or greater than 511.

 The main purpose of this instruction is to convert the numerical value data, which PLC has processed, to
ASCII code and transmit to ASCII peripherals by communication port1 or communication port 4.

Code Conversion Instructions

7-59

FUN 64 P
→ASCII

CONVERSION OF HEXADECIMAL VALUE TO ASCII CODE
FUN 64 P
→ASCII

〈Example 1〉When M1 changes from OFF→ON, it converts hexadecimal value to ASCII code.

M1
S :

N : 1

R0
64P. ASCII

D : R100

EN

․Converts the Nibble 0 of R0 to ASCII code and stores
it into R100 (High byte does not change).

 R0＝0009H R100＝0039H（9）

〈Example 2〉When M1 is ON, it converts hexadecimal value to ASCII code.

M1
EN S :

N : 2

R0

D : R100

64. SCII

․Converts the NB0～NB1 of R0 to ASCII code and

stores it into R100 ～ R101 (high bytes remain
unchanged).

 R0＝009AH R100＝0039H（9）
 R101＝0041H（A）

〈Example 3〉When M1 is ON, it converts hexadecimal value to ASCII code.

M1
EN S :

N :

R0
64. SCII

D : R100

3

․Converts the NB0～NB2 of R0 to ASCII code and

stores it into R100～R102

 R0＝0123H R100＝0031H（1）
 R101＝0032H（2）
 R102＝0033H（3）

〈Example 4〉When M1 is ON, it converts hexadecimal value to ASCII code.

M1
EN S :

N :

R0
64. SCII

D : R100

6

․Converts the NB0～NB5 of R0～R1 to ASCII code
and stores it into R100～R105

 R0＝3456H R100＝0031H（1）
 R1＝0012H R101＝0032H（2）

 R102＝0033H（3）
 R103＝0034H（4）
 R104＝0035H（5）
 R105＝0036H（6）

Flow Control Instructions II

7 -60

END PROGRAM END END

No operand

 When end control "EN" = 1, this instruction is activated. Upon executing the END instruction and "EN" = 1, the
program flow will immediately returns to the starting point (0000M) to restart the next scan – i.e. all the
programs after the END instruction will not be executed. When "EN" = 0, this instruction is ignored, and
programs after the END instruction will continue to be executed as the END instruction is not exist.

 This instruction may be placed more than one point within a program, and its input (end control "EN") controls
the end point of program execution. It is especially useful for debugging and for testing.

 It’s not necessary to put any END instructions in the main program, CPU will automatic restart to start point
when reach the end of main program.

Program 1

X0

Program 2

Program 3

X1

X0=X1=0

Program 1

Program 2

END

0000M

X0=1

X0=0
X1=1

X0

X1
END

Program 3

EN

EN

P
rogram

 execution

ORG
END

ORG
END

Flow Control Instructions II

7-61

FUN 65
LBL

LABEL
FUN 65

LBL

S : Alphanumeric, 1~6 characters

 This instruction is used to make a tag on certain address within a program, to provide a target address for
execution of JUMP, CALL instruction and interrupt service. It also can be used for document purpose to
improve the readability and interpretability of the program.

 This instruction serves only as the program address marking to provide the control of procedure flow or for
remark. The instruction itself will not perform any actions; whether the program contains this instruction or not,
the result of program execution will not be influenced by this instruction.

 The label name can be formed by any 1～6 alphanumeric characters and can’t be duplicate in the same
program. The following label names are reserved for interrupt function usage. These “reserved words”, can’t
be used for normal program labels.

Reserved words Description

X0+I～X15+I（INT0～INT15）

X0−I～X15−I（INT0−～INT15−）
labels for external input (X0～X15) interrupt
service routine.

HSC0I～HSC7I
labels for high speed counter HSC0～HSC7
interrupt service routine.

1MSI（1MS）、2MSI（2MS），3MSI（3MS），
4MSI（4MS），5MSI（5MS），10MSI（10MS），

50MSI（50MS），100MSI（100MS）

Labels for 8 kinds of internal timer interrupt
service routine.

HSTAI（ATMRI），HST0I~HST3I Label for High speed fixed timer interrupt
service routine.

PSO0I～PSO3I Labels for the pulse output command
finished interrupt service routine.

Only the interrupt service routine can use the label names listed on above table, if mistaken on using the
reserved label on the normal subroutine can cause the CPU fail or unpredictable operation.

The label of following diagram illustration served only as program remarks (it is not treated as a label for call
or jump target). For the application of labeling in jump control, please refer to JMP instruction for
explanation. As to the labeling serves as subroutine names, please refer to CALL instruction for details.

65
LBL PGM1

Program 1

65
LBL PGM2

Program 2

Flow Control Instructions II

7 -62

FUN 66 P
JMP

JUMP
FUN 66 P

JMP

JMP

Ladder symbol

66P.
LBLENJump control

LBL : The program label to be jumped

 When jump control “EN”=1 or changes from 0→1 (P instruction), PLC will jump to the location behind the
marked label and continuous to execute the program.

 This instruction is especially suit for the applications where some part of the program will be executed only
under certain condition. This can shorter the scan time while not executes the whole program.

 This instruction allows jump backward (i.e. the address of LBL is comes before the address of JMP
instruction). However, care should be taken if the jump action cause the scan time exceed the limit set by the
watchdog timer, the WDT interrupt will be occurred and stop executing.

 The jump instruction allows only for jumping among main program or jumping among subroutine area, it can’t
jump across main/subroutine area.

66
JMP PATHB

Program A

65
LBL

Program B

X0
EN

PATHB

․In the left diagram, when X0=1, the program will jump
directly to the LBL position named PATHB and
continuing to execute program B. Therefore it will
skip the program A and none of the instructions of
program A will be executed. The status of registers
and the coils associated with program A will keep
unchanged (as if there is no program section A).

Flow Control Instructions II

7-63

FUN 67 P
CALL

CALL
FUN 67 P

CALL

LBL : The subroutine label name to be called.

 When call control “EN”=1 or changes from 0→1 (P instruction), PLC will call (perform) the subroutine bear
the same label name as the one being called. When execute the subroutine, the program will execute
continuous as normal program does but when the program encounter the RTS instruction then the flow of
the program will return back to the address immediately after the CALL instruction.

 All the subroutines must end with one “return from
subroutine instruction RTS” instruction; otherwise it
will cause executing error or CPU shut down.
Nevertheless, an RTS instruction can be shared by
subroutines (so called as multiple entering
subroutines; even though the entry points are
different, they have a same returning path) as
illustrated in the right diagram subroutine SUB1～3.

 When main program called a subroutine, the
subroutine also can call the other subroutines (so
called the nested subroutines) for up to 5 levels at
the most (include the interrupt routine).

65
LBL SUB1

Program 1

65
LBL SUB2

Program 2

66
JMP SUB3

65
LBL SUB3

Program 3

68
RTS

SUB3

SUB2

+SUB1

1X 2X 3X 4X 5X

RTS RTS RTS RTS

Main program area Subroutine area

CALL SUB1

LBL SUB1

CALL SUB2 CALL SUB3 CALL SUB4

LBL SUB2 LBL SUB3 LBL SUB4

 Interrupt service programs （HSC0I～HSC7I、PSO0I～PSO3I、X0+I～X15+I／INT0～INT15、X0−I～X15−I
／INT0−～INT15−、HSTAI／ATMRI、1MSI／1MS、2MSI／2MS、3MSI／3MS、4MSI／4MS、5MSI／5MS、
10MSI／10MS、50MSI／50MS、100MSI／100MS） are also a kind of subroutine. It is also placed in sub
program area. However, the calling of interrupt service program is triggered off by the signaling of
hardware to make the CPU perform the corresponding interrupt service program (which we called as the
calling of the interrupt service program). The interrupt service program can also call subroutine or
interrupted by other interrupts with higher priority. Since it is also a subroutine (which occupied one level),
it can only call or interrupted by 4 levels of subroutine or interrupt service program. Please refer to RTI
instruction for explanation.

Flow Control Instructions II

7 -64

FUN 68
RTS

RETURN FROM SUBROUTINE
FUN 68

RTS

 This instruction is used to represent the end of a subroutine. Therefore it can only appear within the
subroutine area. Its input side has no control signal, so there is no way to serially connect any contacts.
This instruction is self sustain, and is directly connected to the power line.

 When PLC encounter this instruction, it means that the execution of a subroutine is finished. Therefore it will
return to the address immediately after the CALL instruction, which were previously executed and will
continue to execute the program.

 If this instruction encounters any of the three flow control instructions MC, SKP, or JMP, then this instruction
may not be executed (it will be regarded as not exist). If the above instructions are used in the subroutine
and causing the subroutine not to execute the RTS instruction, then PLC will halt the operation and set the
M1933(flow error flag) to 1. Therefore, no matter what the flow is going, it must always ensure that any
subroutine must be able to execute a matched RTS instruction.

 For the usage of the RTS instruction please refer to instructions for the CALL instruction.

Flow Control Instructions II

7-65

FUN 69
RTI

RETURN FROM INTERRUPT
FUN 69

RTI

 The function of this instruction is similar to RTS. Nevertheless, RTS is used to end the execution of sub
program, and RTI is used to end the execution of interrupt service program. Please refer to the explanation
of RTS instruction.

 A RTI instruction can be shared by more than one interrupt service program. The usage is the same as the
sharing of an RTS by many subroutines. Please refer to the explanation of CALL instruction.

 The difference between interrupts and call is that the sub program name (LBL) of a call is defined by user,
and the label name and its call instruction are included in the main program or other sub program.
Therefore, when PLC performs the CALL instruction and the input “EN”=1 or changes from 0→1 (P
instruction), the PLC will call (execute) this sub program. For the execution of interrupt service program, it
is directly used with hardware signals to interrupt CPU to pause the other less important works, and then to
perform the interrupt service program corresponding to the hardware signal (we call it the calling of interrupt
service program). In comparing to the call instruction that need to be scanned to execute, the interrupt is a
more real time in response to the event of the outside world. In addition, the interrupt service program
cannot be called by label name; therefore we preserve the special “reserved words” label name to
correspond to the various interrupts offered by PLC (check FUN65 explanation for details). For example,
the reserved word X0+I is assigned to the interrupt occurred at input point X0; as long as the sub program
contains the label of X0+I, when input point X0 interrupt is occurred (X0:), the PLC will pause the other
lower priority program and jump to the subroutine address which labeled as X0+I to execute the program
immediately.

 If there is a interrupt occurred while CPU is handling the higher priority (such as hardware high speed
counter interrupt) or same priority interrupt program (please refer to Chapter 10 for priority levels), the PLC
will not execute the interrupt program for this interrupt until all the higher priority programs were finished.

 If the RTI instruction cannot be reached and performed in the interrupt service routine, may cause a serious
CPU shut down. Consequently, no matter how you control the flow of program, it must be assured that the
RTI instruction will be executed in any interrupt service program.

 For the detailed explanation and example for the usage of interrupts, please refer to Chapter 9 for
explanation.

Flow Control Instructions II

7 -66

FUN 70
FOR

FOR
FUN 70

FOR

N : Number of times of loop execution

Range

Ope-
rand

WX WY WM WS TMR CTR HR IR OR SR ROR DR K
WX0
∣

WX240

WY0
∣

WY240

WM0
∣

WM1896

WS0
∣

WS984

T0
∣

T255

C0
∣

C255

R0
∣

R3839

R3840
∣

R3903

R3904
∣

R3967

R3968
∣

R4167

R5000
∣

R8071

D0
∣

D4095

1
∣

16383

N ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

 This instruction has no input control, is connected directly to the power line, and cannot be in series with
any conditions.

 The programs within the FOR and NEXT instructions form a program loop (the start of the loop program is
the next instruction after FOR, and the last is the instruction before NEXT). When PLC executes the FOR
instruction, it first records the N value after that instruction (loop execution number), then for N times
successively execution from start to last of the programs in the loop. Then it jumps out of the loop, and
continues executes the instruction immediately after the NEXT instruction.

 The loop can have a nested structure, i.e. the loop includes other loops, like an onion. 1 loop is called a
level, and there can be a maximum of 5 levels. The FOR and NEXT instructions must be used in pairs. The
first FOR instruction and the last NEXT instruction are the outermost (first) level of a nested loop. The
second FOR instruction and the second last NEXT instruction are the second level, the last FOR instruction
and the first NEXT instruction form the loop's innermost level.

71
NEXT

FOR 4

FOR 3

70
FOR 2

NEXT

NEXT

70

70

71

71

2 31

․In the example in the diagram at left, loop will be
executed 4 ×3 ×2 = 24 times, loop will be
executed 3 ×2 = 6 times, and loop will be
executed 2 times.

․If there is a FOR instruction and no corresponding NEXT
instruction, or the FOR and NEXT instructions in the
nested loop have not been used in pairs, or the sequence
of FOR and NEXT has been misplaced, then a syntax
error will be generated and this program may not be
executed.

․In the loop, the JMP instruction may be used to jump out
of the loop. However, care must be taken that once the
loop has been entered (and executed to the FOR
instruction), no matter how the program flow jumps, it
must be able to reach the NEXT instruction before
reaching the END instruction or the bottom of the
program. Otherwise FBs-PLC will halt the operation and
show an error message.

․The effective range of N is 1~16383 times. Beyond this
range FBs-PLC will treat it as 1. Care should be taken , if
the amount of N is too large and the loop program is too
big, a WDT may occur.

Flow Control Instructions II

7-67

FUN 71
NEXT

LOOP END
FUN 71
NEXT

 This instruction and the FOR instruction together form a program loop. The instruction itself has no input
control, is connected directly to the power line, and cannot be in series with any conditions.

 When PLC has not yet entered the loop (has not yet executed to the FOR instruction, or has executed but
then jumped out), but the NEXT instruction is reached, then PLC will not take any action, just as if this
instruction did not exist.

 For the usage of this instruction please refer to the explanations for the FOR instruction on the preceding
page.

I/O Instructions I

7 -68

FUN 74 P
IMDIO

IMMEDIATE I/O
FUN 74 P

IMDIO

D : Starting number of I/O points to be refreshed
N : Number of I/O points to be refreshed

Range

Ope-
rand

X Y K
Xn of
Main
Unit.

Yn of
Main
Unit.

1
∣
36

D ○ ○
N ○

● For normal PLC scan cycle, the CPU gets the entire input signals before the program is executed, and then
perform the executing of program based on the fresh input signals. After finished the program execution the
CPU will update all the output signals according to the result of program execution. Only after the complete
scan has been finished will all the output results be transferred all at once to the output. Thus for the input
event to output responses, there will be a delay of at least 1 scan time (maximum of 2 scan time). With this
instruction, the input signals or output signals specified by this instruction can be immediately refresh to get
the faster input to output response without the limitation imposed by the scan method.

● When refresh control "EN" = 1 or has a transition from 1 to 0(P instruction), then the status of N input
points or output points (D~D+N-1) will be refreshed.

● The I/O points for FBs-PLC's immediate I/O are only limited to I/O points on the main unit. The table below
shows permissible I/O numbers for 20, 32, 40 and 60 point main units:

Main-unit type

Permissible
numbers

10
points

14
points

20
points

24
points

32
points

40
points

60
 points

Input signals X0～X5 X0～X7 X0～X11 X0～X13 X0～X19 X0～X23 X0～X35

Output signals Y0～Y3 Y0～Y5 Y0～Y7 Y0～Y9 Y0～Y11 Y0～Y15 Y0～Y23

● If the intended refresh I/O signals of this instruction is beyond the range of I/O points specified on above
table then PLC will be unable to operate and the M1931 error flag will be set to 1. (for example, if in a
program, D=X11, N=10, which means X11 to X20 are to be immediately retrieved. Supposing the main unit
is FBs-32MA, then its biggest input point is X19, and clearly X20 has already exceeded the main unit's input
point number so under such case M1931 error flag will be set to 1).

● With this instruction, PLC can immediately refresh input/output signals. However, the delay of the hardware
or the software filter impose on the I/O signals still exist. Please pay attention on this.

I/O Instructions I

7-69

FUN 76 D
TKEY

DECIMAL- KEY INPUT
FUN 76 D

TKEY

IN : Key input point

D : register storing key-in numerals

KL: starting coil to reflect the input status

D may combine with V, Z, P0~P9 to serve
indirect address application

Range

Ope-
rand

X Y M S WY WM WS TMR CTR HR OR SR ROR DR XR
X0
∣

X240

Y0
∣

Y240

M0
∣

M1896

S0
∣

S984

WY0
∣

WY240

WM0
∣

WM1896

WS0
∣

WS984

T0
∣

T255

C0
∣

C255

R0
∣

R3839

R3904
∣

R3967

R3968
∣

R4167

R5000
∣

R8071

D0
∣

D4095

V、Z

P0~P9
IN ○
D ○ ○ ○ ○ ○ ○ ○ ○* ○* ○ ○

KL ○ ○ ○

 This instruction has designated 10 input points IN~IN+9 (IN0~IN9) to one decimal number entry (IN->0,
IN+1->1…). According to the key-in sequence (ON) of these input points, it is possible to enter 4 or 8
decimal numbers into the registers specified by D.

 When input control "EN" = 1, this instruction will monitor the
10 input points starting from IN and put the corresponding
number into D register while the key were depressed. It will
wait until the input point has released, then monitor the next
"ON" input point, and shift in the new number into D register
(high digit is older than low digit) . For the 16-bit operand, D
register can store up to 4 digits, and for the 32-bit operand 8
digits may be stored. When the key numbers full fill the D
register, new key-in number will kick out the oldest key
number of the D register. The key-in status of the 10 input
points starting from IN will be recorded on the 10
corresponding coil starting from KL. These coils will set to 1
while the corresponding key is depressed and remain
unchanged even if the corresponding key is released. Until
other key is depressed then it will return to zero. As long as
any input point is depressed (ON), then the key-in flag KPR
will set to 1. Only one of IN0~IN9 key can be depressed at
the same time. If more than one is pressed, then the first
one is the only one taken. Below is a schematic diagram of
the function with 16-bit operand.

Forced out

Key-in
IN0 ~ IN9

BCD Code

9

D BIN(0~9999)

1000S 100S 10S 1S

1 20

 When input control "EN" = 0, this instruction will not be executed. KPR output and KL coil status will be 0.
However, the numerical values of D register will remain unchanged.

Y0X20
EN

76.TKEY

D :
KPRIN :

KL :
R 0
X 0

M 0

․The instruction at left represents the input point X0 with
the number "0", X1 is represented by 1, ... , M0 records
the action of X0, M1 records the action of X1 ... , and the
input numerical values are stored in the R0 register.

I/O Instructions I

7 -70

FUN 76 D
TKEY

DECIMAL- KEY INPUT
FUN 76 D

TKEY

The following diagram is the input wiring schematic for this example:

0 1 2 3 4 5 6 7 8 9

C X0 X1 X2 X3 X4 X5 X6 X7 X8 X9

FBS-PLC input side

 If the X0~X3 key-in sequence follow the sequence in the following diagram. At step
and the X20 is 0, so there was no key generated, only steps are effective. Because the
register can only hold 4 key numbers, Of these 5 steps the first key was kick out. The key strokes 3302 of

the steps are entered in the R0 register.

X20

X0

X1

X2

X3

M0

M1

M2

M3

Y0

R0 0000 0001 0013 1330 3302

3 4 5 6

1

2

4

6

0000 0001 0013 0133 1330 33020000 0001 0013 0133 1330 3302

2

5

7

6

43

1

2 3 4 5 6

I/O Instructions I

7-71

FUN 77 D
HKEY

HEX-KEY INPUT
FUN 77 D

HKEY

IN : Starting of digital input for key scan
OT: Starting of digital output for multiplexing

key scan (4 points)
D : Register to store key-in numbers
KL : Starting relay for key status
WR: Working register, it can't repeat in use
D may combine with V、Z、P0~P9 to serve
indirect addressing application

Range

Ope-
rand

X Y M S WY WM WS TMR CTR HR OR SR ROR DR XR
X0
∣

X240

Y0
∣

Y240

M0
∣

M1896

S0
∣

S984

WY0
∣

WY240

WM0
∣

WM1896

WS0
∣

WS984

T0
∣

T255

C0
∣

C255

R0
∣

R3839

R3904
∣

R3967

R3968
∣

R4167

R5000
∣

R8071

D0
∣

D4095

V、Z

P0~P9
IN ○
OT ○
D ○ ○ ○ ○ ○ ○ ○ ○* ○* ○ ○

KL ○ ○ ○

 The numeric (0~9) key function of this instruction is similar as for the TKEY instruction. The hardware
connection for TKEY and HKEY is different. For TKEY instruction each key have one input point to connect,
while HKEY use 4 input points and 4 output points to form a 4x4 multiplex 16 key input. 4×4 means that
there can be 16 input keys, so in addition to the 10 numeric keys, the other 6 keys can be used as function
keys (just like the usual discrete input). The actions of the numeric keys and the function keys are
independent and have no effect on each other.

 When execution control "EN" = 1, this instruction will scan the numeric keys and function keys in the matrix
formed by the 4 input points starting from IN and the 4 output points starting from OT. For the function of the
numeric keys and "NKP" output please refer to the TKEY instruction. The function keys maintain the key-in
status of the A~F keys in the last 6 relays specified by KL (the first 10 store the key-in status of the numeric
keys). If any one of the A~F keys is depressed, FKP (FO1) will set to 1. The OT output points for this
instruction must be transistor outputs.

 The biggest number for a 16-bit operand is 4 digits (9999), and for 32-bit operand is 8 digits (99999999).
However, there are only 6 function keys (A~F), no matter whether it is a 16-bit or 32-bit operand.

EN IN :
X10 77D.HKEY

OT :
D : R0

Y0
X0

M0
D0WR :

KL :

NKP
M10

FKP
M11

․The instruction in the diagram above
uses X0~X3 and Y0~Y3 to form a
multiplex key input. It can input numeric
values of 8 digits and stores the results
in R1R0. The input status of the function
keys is stored in M10(A)~M15(F). C Y0 Y1 Y2 Y3

S/S X0

PLC (transistor output)

C D E F

8 9 A B

4 5 6 7

0 1 2 3

Function
Keys

Numeric
Keys

X1 X2 X3

24V
-

+

I/O Instructions I

7 -72

FUN 78 D
DSW

DIGITAL SWITCH INPUT
FUN 78 D

DSW

IN :

D :

ENInput control

Ladder symbol

78D.DSW

OT :

ERR Reading error

DN Readout completed

WR :

IN : Starting of input for thumb wheel switch
OT : Starting of output for multiplexing scan

(4 points)
D : Register to store readout value
WR: Working register, it can't repeat in use
 (WR & WR+1 for 16-bit operation;

WR, WR+1 & WR+2 for 32-bit operation)
D may combine with V、Z、P0~P9 to serve
indirect addressing application

Range

Ope-
rand

X Y WY WM WS TMR CTR HR OR SR ROR DR XR
X0
∣

X240

Y0
∣

Y240

WY0
∣

WY240

WM0
∣

WM1896

WS0
∣

WS984

T0
∣

T255

C0
∣

C255

R0
∣

R3839

R3904
∣

R3967

R3968
∣

R4167

R5000
∣

R8071

D0
∣

D4095

V、Z

P0~P9
IN ○
OT ○
D ○ ○ ○ ○ ○ ○ ○ ○* ○* ○ ○

 When input control "EN" = 1, this instruction will readout one digit data from the 4 input points starting from
IN (IN0~IN3). It takes 4 scans to read out a group of 4-digit BCD values (0000~9999) and store them into D
register. With a 32-bit operand, each scan can get 2 digits of data by reading the additional digit from
IN4-IN7 and store it in the D+1 register. Each bit of OT0~OT3 will sequentially set to 1 and get the digit data
respectively into 100(ones), 101(tens), 102(hundreds), and 103(thousands). As long as EN is 1, PLC will
scan and read out in continuous cycles. When each complete cycle is finished (i.e. the 4 digit readout of
100~103 is completed), the readout completed flag "DN" is set to 1. However, it is only kept for one scan. If
any digital readout value is not within the range of 0~9 (BCD), then reading error "ERR" will be set to 1 and
the value of that group of digits will be set to 0000.

 The output points must be transistor outputs.

X10
EN IN : X0

M10

OT : Y0
R0D :
D0WR :

M11

DN

ERR

78.DSW

․In this example, when X10 is 1, then the numeric value of the
thumb wheel switch (5678 in this example) will be read out
and stored into the R0 register.

․The bits (8,4,2,1) with same digit should be connect together
and series with a diode (as shown in diagram below).

․With 32-bit operand a set of similar thumb wheel switch may
be added to X4~X7 (Y0~Y3 are shared with another group).

8

BCD thumb
wheel swith

first group input

Y1Y0C Y2 Y3

X1X0S/S
1

24 1

4
X2

2
X3

8

second group input
(only effective in
32-bit operand)

PLC

X4 X5 X6 X7

3 (5)10 2 (6)10 101 (7) (8)100

24V

1248 1248 1248

-

+

I/O Instructions I

7-73

FUN 79 D
7SGDL

7-SEGMENT OUTPUT WITH LATCH
FUN 79 D

7SGDL

S :

N :

ENExecution control

Ladder symbol

79D.7SGDL

OT :

DN Output complete

WR :

S : Register storing the data (BCD) to be
displayed

OT : Starting number of scanning output
N : Specify signal output and polarity of latch
WR : Working register, it can't repeat in use
S may combine with V、Z、P0~P9 to serve
indirect addressing application

Range

Ope-
rand

Y WX WY WM WS TMR CTR HR IR OR SR ROR DR K XR
Y0
∣

Y240

WX0
∣

WX240

WY0
∣

WY240

WM0
∣

WM1896

WS0
∣

WS984

T0
∣

T255

C0
∣

C255

R0
∣

R3839

R3840
∣

R3903

R3904
∣

R3967

R3968
∣

R4167

R5000
∣

R8071

D0
∣

D4095

16-bit
number

V、Z

P0~P9
S ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

OT ○
N 0～3

 When input control "EN" = 1, the 4 nibbles of the S register, from digit 0 to digit 3, are sequentially sent out to
the 4 output points, OT0~OT3. While output the digit data, the latch signal of that digit (OT4 corresponds to
digit 0, OT5 corresponds to digit 1, etc...) at the same time is also sent out so that the digital value will be
loaded and latched into the 7-segment display respectively.

 When in D (32-bit) instruction, nibbles 0~3 from the S register, and nibbles 0~3 from the S+1 register are
transferred separately to OT0~OT3 and OT8~OT11. Because they are transferred at the same time, they can
use the same latch signal. 16-bit instructions do not use OT8~OT11.

 As long as "EN" remains 1, PLC will execute the transfer cyclically. After each transfer of a complete group of
numerical values (nibbles 0~3 or 0~7), the output completed flag "DN" will set to 1. However, it will only be kept
for 1 scan.

EN DN
M10

OT : Y0

WR : D0

X0 79D.7SGDL

N :

S : R0

2

 In this example, when X0=1, the 4 nibbles of R0
will be transferred to the first group 7-segment
display in the diagram below. The 4 nibbles of R1
will be transferred to the second group 7-segment
display.

first group second group

VCC VCC
COMCOM

1
2
4
8 8

4
2
1

103 102

PLC transistor output

NPN

101 100 10 10 10 100123

1 2 4 8 010 8421110 102 103

C Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11

I/O Instructions I

7 -74

FUN 79 D
7SGDL

7-SEGMENT OUTPUT WITH LATCH
FUN 79 D

7SGDL

 FATEK PLC's transistor output has both a negative logic transistor output (NPN transistor - when the output
status is ON, the terminal voltage of the transistor output is low), and a positive logic transistor output (PNP -
when the output status is ON, the terminal voltage of the transistor output is high). Their structure is as follows:

FBs-PLC negative logic output (NPN transistor) FBs-PLC positive logic output (PNP transistor)

+24V

0V

Yn

Yn

C

+24V

When Yn is
"ON", this output
voltage is low

+24V

0V

Yn
Yn

C +24V

0V

When Yn is "ON",
Yn's terminal
voltage is high

 The data inputs (8,4,2,1) and latch signals of the 7-segment displays on the shelf for positive and negative logic
are all available. For example, for numerical value "8", the positive logic input should be 1000, and the negative
logic input 0111. Similarly, when the latch signal is 0, the positive logic latch permits the display numerical values
to enter through the latch (i.e. be loaded). When the latch signal is 1, the numerical values in the latch are
latched (maintained), and with negative logic they are not. The following diagram of a CD-4511 7-segment
display IC is an example of a positive logic numerical value input with latch.

4bit
latch

BCD to
7-segment

LED
Drive

CD4511

(1)A
(2)B
(4)C
(8)D

(10) LE
Latch sing 1

LT BI
VCC

R
a
b
c
d
e
f
g

N
um

berical value input

n

a

g

d

f

e

b

c

 Because the PLC output and the 7-segment display input polarity can be positive and negative logic. Therefore,
the polarities between output and input must be coordinated to get the correct result. This instruction uses N to
specify the polarity relation between the PLC transistor output, and the 7-segment display. The table below
shows all the possibility.

Numerical value input (8~1) Latch signal (100-103) Value of N

Same
Same 0

Different 1

Different
Same 2

Different 3

 In the diagram above, CD4511 is used as an example. If use NPN output, the data input polarity is different to
PLC, and its latch input polarity is the same as PLC, so N value should chosen as 2.

I/O Instructions I

7-75

FUN 80
MUXI

MULTIPLEX INPUT
FUN 80
MUXI

IN : Multiplex input point number

OT : Multiplex output point number
(must be transistor output point)

N : Multiplex input lines (2~8)

D : Register for storing results

D may combine with V, Z, P0~P9 to serve
indirect address application

Range

Ope-
rand

X Y WY WM WS TMR CTR HR OR SR ROR DR K XR
X0
∣

X240

Y0
∣

Y240

WY0
∣

WY240

WM0
∣

WM1896

WS0
∣

WS984

T0
∣

T255

C0
∣

C255

R0
∣

R3839

R3904
∣

R3967

R3968
∣

R4167

R5000
∣

R8071

D0
∣

D4095

2
∣
8

V、Z

P0~P0

IN ○
OT ○
N ○
D ○ ○ ○ ○ ○ ○ ○ ○* ○* ○ ○

 This instruction uses the multiplex method to read out N lines of input status from 8 consecutive input points
(IN0~IN7) starting from the input point specified by IN. With this method we can obtain 8×N input status, but
only need to use 8 input points and N output points.

 The multiplex scanning method goes through N output points starting from the OT output point. Each scan one
of the N bits will set to 1 and the corresponding line will be selected. OT0 responsible for first line, while OT1
responsible for second line, etc. Until it read all the N lines the 8×N status that has been read out is then stored
into the register starting at D, and the execution completed flag "DN" is set as 1 (but is only kept for one
scanning period).

 With every scan, this instruction retrieves a line for 8 input status, so N lines require N scan cycles before they
can be completed.

EN IN : X24

80.MUXI

DN
M10

OT : Y16
4N :

WR : D0
WM0D :

X0
 This example retrieves 4 lines×8 points of input,

32 point status in all. They are stored into the
32-bit register of DWM0 (M0~M31).

Fourth line

Third line

Second line

First line

M24 M25 M26 M27 M28 M29 M30 M31

M16 M17 M18 M19 M20 M21 M22 M23

M8 M9 M10

M0 M1 M2

M11

M3 M4

M12

M5

M13 M14

M6 M7

M15

PLC NPN transistor output

S/S X24 X25 X26 X27 X28 X29 X30 X31

C Y16 Y17 Y18 Y19 Y20 Y21 Y22 Y23

24V

I/O Instructions I

7 -76

FUN 81 D
PLSO

PULSE OUTPUT
FUN 81 D

PLSO

MD :

PC :

ENOutput control

Ladder symbol
81D.PLSO

Fr :

OUT Output go

UY:or CK
DN

DY:or DR
HO :

Output completed

ERR Error

Pause control PAU

Up/Down direction U/D
Or DIR

MD : Output mode selection
Fr : Pulse frequency
PC : Output pulse count
UY : Up pulse output point (MD=0).
DY : Down pulse output point (MD=0).
HO : Cumulative output pulse register.

(Can be not assigned).
CK : Pulse output point (MD=1).
DR : Up/Down output point (MD=1).
DIR: 1- up; 0- down.

Range

Ope-
rand

Y WX WY WM WS TMR CTR HR OR SR ROR DR K
Yn of
Main
Unit

WX0
∣

WX240

WY0
∣

WY240

WM0
∣

WM1896

WS0
∣

WS984

T0
∣

T255

C0
∣

C255

R0
∣

R3839

R3904
∣

R3967

R3968
∣

R4167

R5000
∣

R8071

D0
∣

D4095

16/32-bit
+/- number

MD 0～1
Fr ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 8～2000
PC ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

UY，CK ○
DY，DR ○

HO ○ ○ ○ ○ ○ ○ ○ ○* ○* ○

 When MD=0, this instruction performs the pulse output control as following:
 Whenever the output control “EN” changes from 0→1, it first performs the reset action, which is to clear the

output flag “OUT” and “DN” as well as the pulse out register HO to be 0. It gets the pulse frequency and
output pulse count values, and reads status of up and down direction “U/D”, so as to determine the direction
to be upward or downward. As the reset finished, this instruction will check the input status of pause output
“PAU”. No action will be taken if the pause output is 1 (output pause). If the PAU is 0, it will start to output
the ON/OFF pulse with 50% duty at the frequency Fr to the UY(U/D=1) or DY(U/D=0) point. It will increment
the value of HO register each time when a pulse is output, and will stop the output when HO register’s pulse
count is equal to or greater than the cumulative pulse count of PC register and set the output complete flag
“DN” to 1. During the time when output pulse is transmitting the output transmitting flag “OUT” will be set to 1,
otherwise it will be 0.

 Once it starts to transmit pulse, the output control “EN” should kept to 1. If it is changed to 0, it will stop the
pulse sending (output point become OFF) and the flag “OUT” changes back to 0, but the other status or data
will keep unchanged. However, when its “EN” changes again from 0 to 1, it will lead to a reset action and
treat as a new start; the entire procedure will be restarted again.

 If you want to pause the pulse output and not to restart the entire procedure, the ‘pause output’ “PAU” input
can be used to pause it. When “PAU” =1, this instruction will pause the pulse transmitting (output point is
OFF, flag “OUT” change back to 0 and the other status or data keeps unchanged). As it waits until the
“PAU” changes back from 1 to 0, this instruction will return to the status before it is paused and continues the
pulse transmitting output.

 During the pulse transmission, this instruction will keep monitoring the value of pulse frequency Fr and output
pulse count PC. Therefore, as long as the pulse output is not finished, it may allow the changing of the pulse
frequency and pulse count. However, the up/down direction “U/D” status will be got only once when it takes
the reset action (“EN” changes from 0→1), and will keep the status until the pulse output completed or
another reset occur. That is to say, except that at the very moment of reset, the change of “U/D” does not
influence the operation of this instruction.

 The main purpose of this instruction is to drive the stepping motor with the UY (upward) and DY (downward)
two directional pulses control, so as to help you control the forward or reverse rotating of stepping motor.
Nevertheless, if you need only single direction revolving, you can assign just one of the UY or DY (which will
save one output point), and leaving the other output blank. In such case, the instruction will ignore the
up/down input status of “U/D”, and the output pulse will send to the output point you assigned.

I/O Instructions I

7-77

FUN 81 D
PLSO

PULSE OUTPUT
FUN 81 D

PLSO

 When MD=1, the pulse output will reflect on the control output DIR (pulse direction. DIR=1, up; DIR=0, down)
and CK (pulse output).

 This instruction can only be used once, and UY (CK) and DY (DR) must be transistor output point on the PLC
main unit.

 The effective range of output pulse count PC for 16 bit operand is 0～32767. For the 32 bit operand(　
instruction), it is 0～2147483647. If the PC value = 0, it is treated as infinite pulse count, and this instruction
will transmit pulses without end with HO value and “DN” flag set at 0 all the time. The effective range of pulse
frequency (Fr) is 8～2000. If the value PC or Fr exceeds the range, this instruction will not be carried out and
the error flag “ERR” will set to 1.

X0
EN MD : 0

81D.PLSO

OUT
M0

Fr : R 0
PC :

DY :
UY :

HO :

X1
PAU

X2
U/D

DN
M1

R 1
Y 0
Y 1
R 5

ERR

 In this example, the program controls the stepping motor
to drive forward for 80 pulses (steps) at the speed of
100Hz first, and then makes it turn reverse for 40 pulses
the speed of 50Hz. Make sure that the up/down direction,
frequency Fr and the pulse count PC must be set before
the reset take action(“EN” changes from 0→1).

Turn forward
100Hz going 80 steps

Reset
enable

X0

X1

X2

Pause

re-start
Stop

(finished)

Y0

Turn reverse
50Hz going 40 steps

Reset Start
Stop

(finished)

Y1

M0

M1

R0

R1

R5Output pulse count

Pulse to output

Frequency

Output done

Under output

Down-pulse

Output enable

Pause

Direction

Up-pulse

Recerse

1 2 76 77 78 79 80

1 2 40

100

80

0 1 2 75 76 77 78 79 80

50

40

0 1 2 39 40

Forward

I/O Instructions I

7 -78

FUN 82
PWM

PULSE WIDTH MODULATION
FUN 82
PWM

To : Pulse ON width
 (0~32767mS)

Tp : Pulse period
 (1~32676mS)

OT : Pulse output point

Range

Ope-
rand

Y WX WY WM WS TMR CTR HR IR OR SR ROR DR K
Yn

of main
unit

WX0
∣

WX240

WY0
∣

WY240

WM0
∣

WM1896

WS0
∣

WS984

T0
∣

T255

C0
∣

C255

R0
∣

R3839

R3840
∣

R3903

R3904
∣

R3967

R3968
∣

R4167

R5000
∣

R8071

D0
∣

D4095

0
∣

32767
To ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
Tp ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
OT ○

 When execution control "EN" = 1, will send the pulse to output point OT with the "ON" state for To ms and
period as Tp. OT must be a transistor output point on the main unit. When "EN" is 0, the output point will be
OFF.

To

Tp

 The units for Tp and To are mS, resolution is 1 mS. The minimum value for To is 0 (under such case the
output point OT will always be OFF), and its maximum value is the same as Tp (under such case the output
point OT will always be on). If To > Tp there will be an error, this instruction will not be carried out, and the
error flag "ERR" will set to 1.

 This instruction can only be used once.

I/O Instructions I

7-79

FUN 83
SPD

SPEED DETECTION
FUN 83

SPD

S :ENDetection control

Ladder symbol
83.SPD

TI :

OVF

D :

Overflow

S : Pulse input point for speed detection
TI : Sampling duration

 (units in mS)
D : Register storing results

Range

Ope-
rand

X WX WY WM WS TMR CTR HR IR OR SR ROR DR K
X0
∣
X7

WX0
∣

WX240

WY0
∣

WY240

WM0
∣

WM1896

WS0
∣

WS984

T0
∣

T255

C0
∣

C255

R0
∣

R3839

R3840
∣

R3903

R3904
∣

R3967

R3968
∣

R4167

R5000
∣

R8071

D0
∣

D4095

1
∣

32767
S ○
TI ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
D ○ ○ ○ ○ ○ ○ ○ ○ ○* ○* ○

 This instruction uses the interrupt feature of the 8 high speed input points (X0~X7) on the PLC main unit to
detect the frequency of the input signal. Within a specific sampling time (TI), it will calculate the input pulse
count for S input point, and indirectly find the revolution speed of rotating devices (such as motors).

 While use this instruction to detect the rotating speed of devices, The application should design to generate
more pulse per revolution in order to get better result, but the sum of input frequency of all detected signals
should under 5KHz, otherwise the WDT may occur.

 The D register for storing results uses 3 successive 16-bit registers starting from D (D0~D2). Besides D0
which is used to store counting results, D1 and D2 are used to store current counting values and sampling
duration.

 When detection control "EN" = 1, it starts to calculate the pulse count for the S input point, which can be
shown in D1 register. Meanwhile the sampling timer (D2) is switched on and keeps counting until the value of
D2 is reach to the sampling period (TI). The final counted value is stored into the D0 register, and then a new
counting cycle is started again. The sampling counting will go on repeating until "EN" = 0.

 Because D0 only has 16 bits, so the maximum count is 32767. If the sampling period is too long or the input
pulse is too fast then the counted value may exceed 32767, under that case the overflow flag will set to 1, and
the counting action will stop.

 Because the sampling period TI is already known and if every revolution of attached rotating device produces
"n" pulses, then the following equation can be used to get the revolution

speed :)rpm(10×
TI×n
60×)0D(

=N 3 　　

X20
EN S : X 0

83.SPD

D : R 0
TI : 1000

OVF

 In the above example, if every revolution of the rotating
device produces 20 pulses (n = 20), and the R0 value is
200, then the revolution per minute speed "N" is as

 rpm200=10×
1000×60

60×)200(
=N:follows 3

1000mS 1000mS 1000mS

R1a R1b R1c

a b c

R1a R1b R1c

1000

0

0

X0

R2

R1

R0

X20

I/O Instructions I

7 -80

FUN 84
TDSP

PATTERN CONVERSION FOR 16/7-SEGMENT DISPLAY
FUN 84
TDSP

S :
ENExecution control

Ladder symbol

84.TDSP

N :OFF

ON

N :
D :

L

Input control

Input control

Md :

S

Md : Mode selection
S : Starting address of begin converted characters
Ns : Start of character
Nl : Length of character
D : Starting address to store the converted pattern
S operand can be combined with V, Z, P0~P9 index
registers for indirect addressing

Rang

e

Operand

HR OR ROR DR K XR
R0
∣

R3839

R3904
∣

R3967

R5000
∣

R8071

D0
∣

D4095
16/32 bit

V、Z

P0~P9

Md 0~1
S ○ ○ ○ ○ ○ ○

Ns ○ ○ ○ ○ ○
Nl ○ ○ ○ ○ ○
D ○ ○ ○* ○

● This instruction is used for FBs-7SG1/FBs-7SG2 module’s application. It can convert the source
alphanumeric characters into display patterns suited for 16 segment encoded mode display or perform the
leading zero substitution of the packed BCD number for non-decoded mode 7 segment display.

● When execution control “EN” =1, and input “OFF” = 0, input “ON”=0, if Md=0, this instruction will perform the
display pattern conversion, where S is the starting address storing the being converted characters, Ns is the
pointer to locate the starting address character, NI tells the length of being converted characters, and D is the
starting address to store the converted result.

Byte 0 of S is the “1st” displaying character, byte 1 of S is the 2nd displaying character,……..

Ns is the pointer to tell where the start character is.

After execution, each 8-bit character of the source will be converted into the corresponding 16-bit display
pattern.

● When input “OFF” = 1, all bits of display pattern will be ‘off’ if Md = 0, if Md=1, all BCD codes will be
substituted by blank code (0F)

● When input “ON” = 1, all bits of display pattern will be ‘on’ if Md=0. If Md=1, all BCD codes will be substituted
by code 8(all light).

● Please refer Chapter 16 “FBs-7SG display module” for more detail description.

I/O Instructions I

7-81

FUN 86
TPCTL

PID TEMPERATURE CONTROL INSTRUCTION
FUN 86
TPCTL

Function guide and notifications

 By employing the temperature module and table editing method to get the current value of temperature and
let it be as so called Process Variable (PV); after the calculation of software PID expression, it will respond
the error with an output signal according to the setting of Set Point (SP),the error's integral and the rate of
change of the process variable. Through the closed loop operation, the steady state of the process may be
expected.

 Convert the output of PID calculation to be the time proportional on/off (PWM) output, and via transistor
output to control the SSR for heating or cooling process; this is a good performance and very low cost
solution.

 Through the analog output module (D/A module), the output of PID calculation may control the SCR or
proportional valve to get more precise process control.

 Digitized PID expression is as follows:

Mn = [Kc×En]+ ∑
0

n
 [Kc×Ti×Ts×En]−[Kc×Td×(PVn−PVn-1)/Ts]

Where,
Mn: Output at time “n”.
Kc: Gain (Range: 1～9999；Pb=100(%) / Kc)
Ti: Integral tuning constant (Range:0～9999, equivalent to 0.00～99.99 Repeat/Minute)
Td: Derivative tuning constant (Range:0～9999, equivalent to 0.00～99.99 Minute)

Md: Selection of PID method
 =0, Modified minimum overshoot method
 =1, Universal PID method

Yn: Starting address of PID ON/OFF output;
it takes Zn points.

Sn: Starting point of PID control of this instruction;
Sn = 0～31.

Zn: Number of the PID control of this instruction;
1≤Sn+Zn≤32

Sv: Starting register of the set point:
it takes Zn registers.

Os: Starting register of the in-zone offset;
it takes Zn registers.

PR: Starting register of the gain (Kc):
it takes Zn registers.

IR: Starting register of integral tuning constant
(Ti);it takes Zn registers..

DR: Starting register of derivative tuning constant
(Td); it takes Zn registers.

OR: Starting register of the PID analog output.
it takes Zn registers.

WR: Starting of working register for this
instruction.
It takes 9 registers and can’t be repeated in
using.

Range

Ope-
rand

Y HR ROR DR K
Y0
∣

Y255

R0
∣

R3839

R5000
∣

R8071

D0
∣

D3999

Md 0～1
Yn ○
Sn 0～31
Zn 1～32
Sv ○ ○* ○
Os ○ ○* ○
PR ○ ○* ○
IR ○ ○* ○
DR ○ ○* ○
OR ○ ○* ○
WR ○ ○* ○

I/O Instructions I

7 -82

FUN 86
TPCTL

PID TEMPERATURE CONTROL INSTRUCTION
FUN 86
TPCTL

PVn : Process variable at time “n”
PVn_1: Process variable when loop was last solved
En: Error at time “n” ; E= SP – PVn
Ts: Solution interval for PID calculation (Valid value are 10, 20, 40, 80,160, 320; the unit is in 0.1Sec)

PID Parameter Adjustment Guide

 As the gain (Kc) adjustment getting larger, the larger the proportional contribution to the output. This can
obtain a sensitive and rapid control reaction. However, when the gain is too large, it may cause oscillation.
Do the best to adjust “Kc” larger (but not to the extent of making oscillation), which could increase the
process reaction and reduce the steady state error.

 Integral item may be used to eliminate the steady state error. The larger the number (Ti, integral tuning
constant), the larger the integral contribution to the output. When there is steady state error, adjust the “Ti”
larger to decrease the error.
When the “Ti” = 0, the integral item makes no contribution to the output.
For exam. , if the reset time is 6 minutes, Ti=100/6=17；if the integral time is 5 minutes, Ti=100/5=20.

 Derivative item may be used to make the process smoother and not too over shoot. The larger the number
(Td, derivative tuning constant), the larger the derivative contribution to the output. When there is too over
shoot, adjust the “Td” larger to decrease the amount of over shoot.
When the “Td” = 0, the derivative item makes no contribution to the output.
For exa, if the rate time is 1 minute, then the Td = 100; if the differential time is 2 minute, then the Td = 200.

 Properly adjust the PID parameters can obtain an excellent result for temperature control.

 The default solution interval for PID calculation is 4 seconds (Ts=40)

 The default of gain value (Kc) is 110, where Pb=1000/110×0.1%≒0.91%; the system full range is 1638°, it
means 1638×0.91≒14.8°to enter proportional band control.

 The default of integral tuning constant is 17, it means the reset time is 6 minutes (Ti=100/6=17).

 The default of derivative tuning constant is 50, it means the rate time is 0.5 minutes (Td=50).

 When changing the PID solution interval, it may tune the parameters Kc, Ti, Td again.

 Instruction guide

 FUN86 will be enabled after reading all temperature channels.

 When execution control “EN” = 1, it depends on the input status of H/C for PID operation to make heating
(H/C=1) or cooling (H/C=0) control. The current values of measured temperature are through the
multiplexing temperature module ; the set points of desired temperature are stored in the registers starting
from Sv. With the calculation of software PID expression, it will respond the error with an output signal
according to the setting of set point, the error's integral and the rate of change of the process variable.
Convert the output of PID calculation to be the time proportional on/off (PWM) output, and via transistor
output to control the SSR for heating or cooling process; where there is a good performance and very low
cost solution. It may also apply the output of PID calculation (stored in registers starting from OR), by way
of D/A analog output module, to control SCR or proportional valve, so as to get more precise process control.

 When the setting of Sn, Zn (0 Sn 31 and 1 Zn 32, as well as 1 Sn + Zn 32) comes error, this
instruction will not be executed and the instruction output “ERR” will be ON.

This instruction compares the current value with the set point to check whether the current temperature falls within
deviation range (stored in register starting from Os). If it falls in the deviation range, it will set the in-zone bit of
that point to be ON; if not, clear the in-zone bit of that point to be OFF, and make instruction output “ALM” to be
ON.

I/O Instructions I

7-83

FUN 86
TPCTL

PID TEMPERATURE CONTROL INSTRUCTION
FUN 86
TPCTL

 In the mean time, this instruction will also check whether highest temperature warning (the register for the set
point of highest temperature warning is R4008). When successively scanning for ten times the current
values of measured temperature are all higher than or equal to the highest warning set point, the warning bit
will set to be ON and instruction output “ALM” will be on. This can avoid the safety problem aroused from
temperature out of control, in case the SSR or heating circuit becomes short.

 This instruction can also detect the unable to heat problem resulting from the SSR or heating circuit runs open,
or the obsolete heating band. When output of temperature control turns to be large power (set in R4006
register) successively in a certain time (set in R4007 register), and can not make current temperature fall in
desired range, the warning bit will set to be ON and instruction output “ALM” will be ON.

 WR: Starting of working register for this instruction. It takes 9 registers and can’t be repeated in using.
 The content of the two registers WR+0 and WR+1 indicating that whether the current temperature falls

 within the deviation range (stored in registers starting from Os). If it falls in the deviation range, the
 in-zone bit of that point will be set ON; if not, the in-zone bit of that point will be cleared OFF.
Bit definition of WR+0 explained as follows:
 Bit0=1, it represents that the temperature of the Sn+0 point is in-zone…
 Bit15=1, it represents that the temperature of the Sn+15 point is in-zone.

 Bit definition of WR+1 explained as follows:
 Bit0=1, it represents that the temperature of the Sn+16 point is in-zone…
 Bit15=1, it represents that the temperature of Sn+31 point is in-zone.
The content of the two registers WR+2 and WR+3 are the warning bit registers, they indicate that
whether there exists the highest temperature warning or heating circuit opened.

Bit definition of WR+2 explained as follows:
 Bit0=1, it means that there exists the highest warning or heating circuit opened at the Sn+0 point...
 Bit15=1, it means that there exists the highest warning or heating circuit opened at the Sn+15 point.
Bit definition of WR+11 explained as follows:

 Bit0=1, it means that there exists the highest warning or heating circuit opened at the Sn+16 point...
 Bit15=1 , it means that there exists the highest warning or heating circuit opened at the Sn+31 point.

Registers of WR+4 ～ WR+8 are used by this instruction.

 It needs separate instructions to perform the heating or cooling control.

 Specific registers related to FUN86

 R4005 : The content of Low Byte to define the solution interval between PID calculation
 =0, perform the PID calculation every 1 seconds.
 =1, perform the PID calculation every 2 seconds.
 =2, perform the PID calculation every 4 seconds. (System default)
 =3, perform the PID calculation every 8 seconds.
 =4, perform the PID calculation every 16 seconds.
 ≥5, perform the PID calculation every 32 second.

: The content of High Byte to define the cycle time of PID ON/OFF（PWM）output.
 =0，PWM cycle time is 1 seconds.
 =1，PWM cycle time is 2 seconds. (System default)
 =2，PWM cycle time is 4 seconds.
 =3，PWM cycle time is 8 seconds.
 =4，PWM cycle time is 16 seconds.
 ≥5，PWM cycle time is 32 second.

Note 1: When changing the value of R4005, the execution control “EN” of FUN86 must be set at 0. The next time
when execution control “EN” =1, it will base on the latest set point to perform the PID calculation.

Note 2: The smaller the cycle time of PWM, the more even can it perform the heating. However, the error caused
by the PLC scan time will also become greater. For the best control, it can base on the scan time of PLC
to adjust the solution interval of PID calculation and the PWM cycle time.

I/O Instructions I

7 -84

FUN 86
TPCTL

PID TEMPERATURE CONTROL INSTRUCTION
FUN 86
TPCTL

 R4006: The setting point of large power output detection for SSR or heating circuit opened, or heating band
obsolete. The unit is in % and the setting range falls in 80～100(%); system default is 90(%).

 R4007: The setting time to detect the continuing duration of large power output while SSR or heating circuit
opened, or heating band obsolete. The unit is in second and the setting range falls in 60～65535

(seconds); system default is 600 (seconds).

 R4008: The setting point of highest temperature warning for SSR, or heating circuit short detection. The
unit is in 0.1 degree and the setting range falls in 100～65535; system default is 3500 (Unit in 0.1°).

 R4012: Each bit of R4012 to tell the need of PID temperature control.
Bit0=1 means that 1st point needs PID temperature control.
Bit1=1 means that 2nd point needs PID temperature control.
‧
‧

Bit15=1 means that 16th point needs PID temperature control.
(The default of R4012 is FFFFH)

 R4013: Each bit of R4013 to tell the need of PID temperature control.
Bit0=1 means that 17th point needs PID temperature control.
Bit1=1 means that 18th point needs PID temperature control.
‧
‧

Bit15=1 means that 32th point needs PID temperature control.
(The default of R4013 is FFFFH)

 While execution control “EN”=1 and the corresponding bit of PID control of that point is ON (corresponding
bit of R4012 or R4013 must be 1), the FUN86 instruction will perform the PID operation and respond to the
calculation with the output signal.

 While execution control “EN”=1 and the corresponding bit of PID control of that point is OFF (corresponding
bit of R4012 or R4013 must be 0), the FUN86 will not perform the PID operation and the output of that point
will be OFF.

 The ladder program may control the corresponding bit of R4012 and R4013 to tell the FUN86 to perform or
not to perform the PID control, and it needs only one FUN86 instruction.

Cumulateive Timer Instructions

7-85

FUN87 T.01S
FUN88 T.1S
FUN89 T1S

ACCUMULATIVE TIMER
FUN87 T.01S
FUN88 T.1S
FUN89 T1S

CV : Register storing elapse time
(current value)

PV : Preset value of timer

Range

Ope-
rand

WX WY WM WS TMR CTR HR IR OR SR ROR DR K
WX0
∣

WX240

WY0
∣

WY240

WM0
∣

WM1896

WS0
∣

WS984

T0
∣

T255

C0
∣

C199

R0
∣

R3839

R3840
∣

R3903

R3904
∣

R3967

R3968
∣

R4167

R5000
∣

R8071

D0
∣

D4095

0
∣

32767
CV ○ ○ ○ ○ ○ ○ ○ ○ ○* ○* ○
PV ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

 The operation for this instruction is the same as that for the basic timer (T0~T255), except that the basic
timer only has a "timing control" input - when its input is 1 it starts timing, and when input is 0 it get clear.
Every time the input changes, it starts timing again and is unable to accumulate. Timing with this instruction
is only permissible when enable control "EN" = 1. With this instruction, when timing control "TIM" is 1, it is
the same as a basic timer, but when "TIM" is 0, it does not clear, but keeps the current value. If the timer
need to clear, then change enable control "EN" to 0. When timing control "TIM" is once again to be 1, it will
continue to accumulate from the previous value when the timer last paused. In addition, this instruction also
has two outputs, "Time up TUP" (when time up it is 1, usually it is 0) and "Time not up" (usually it is 1, when
time is up it is 0). Users can utilize input and output combinations to produce timers with various different
functions. For example:

 On delay energizing timer:

X0
TIM CV :

PV : 10
R 0

89.T1S

TUP
Y0

EN NUP

 This timer's output (Y0 in this example) is
normally not energized. When this timer's
input control (X0 in this example) is activated
(ON), only after delay by 10 sec will output
Y0 become energized (ON).

 On delay de-energizing timer:

X0
TIM CV :

PV : 10
R 0

89.T1S

Y0
NUPEN

TUP

 The output Y0 of this timer is usually
energized. When this timer's input control X0
is on, only after delay by 10 sec will the
output become de-energized (OFF).

Cumulative Timer Instructions

7-86

FUN87 T.01S
FUN88 T.1S
FUN89 T1S

ACCUMULATIVE TIMER
FUN87 T.01S
FUN88 T.1S
FUN89 T1S

 Off delay energizing timer:

X0
TIM CV :

PV : 10
R 0

89.T1S

TUP
Y0

EN NUP

 This timer's output Y0 is usually
de-energized. When this timer's input control
X0 is off, only after delay by 10 sec will
output Y0 become energized (ON).

 Off delay de-energizing timer:

X0
TIM CV :

PV : 10
R 0

89.T1S

Y0
NUPEN

TUP

 This timer's output Y0 is usually energized.
When this timer's timing control X0 is off,
only after delay by 10 sec will output Y0
become de-energized (OFF).

 The diagram below shows the relation on input and output for the above 4 kinds of timers.

OFF

OFF

OFF

OFF

OFF

OFF

ON

ON

ON

ON

ON

ON

ON

OFF

OFF

"ON" (X0 pressed down) "OFF" (X0 released)

X0

ON delay energizing

ON delay de-energizing

OFF delay energizing

OFF delay de-enrgizing

10S

10S

10S

10S

Watchdog Timer Instructions

7-87

FUN 90 P
WDT

WATCHDOG TIMER
FUN 90 P

WDT

N : The watchdog time. The range of N is 5~120, unit
in 10mS (i.e. 50ms~1.2 sec)

 When execution control "EN" = 1 or transition from 0 to 1(P instruction), will set the watchdog time to
Nx10ms. If the scan time exceeds this preset time, PLC will shut down and not execute the application
program.

 The WDT feature is designed mainly as a safety consideration from the system view for the application. For
example, if the CPU of PLC is suddenly damaged, and there is no way to execute the program or refresh I/O,
then after the WDT time expired, the WDT will automatically switch off all the I/Os, so as to ensure safety. In
certain applications, if the scan time is too long, it may cause safety problems or problems of
non-conformance with control requirements. This instruction can used to establish the limitation of the scan
time that you require.

 Once the WDT time has been set it will always be kept, and there is no need to set it again on each scan.
Therefore, in practice this instruction should use the P instruction.

 Default WDT time is 0.25 sec.

 For the operation principles of WDT please refer to the RSWDT(FUN 91) instruction.

Watchdog Timer Instructions

7 -88

FUN 91 P
RSWDT

RESET WATCHDOG TIMER
FUN 91 P
RSWDT

This instruction has no operand.

 When execution control "EN" = 1 or from 0 to 1 (P instruction), the WDT timer will be reset (i.e. WDT will
start timing again from 0).

 The functions of WDT have already been described in FUN90 (WDT instruction).
The operation principles of watch dog timer are as follows:

The watchdog timer is normally implemented by a hardware one-shot timer (it can not be software,
otherwise if CPU fail, the timer becomes ineffective, and safeguards are quite impossible). "One-shot"
means that after triggered the timer once, the timing value will immediately be reset to 0 and timing will
restart. If WDT has begun timing, and never triggered it again, then the WDT timing value will continue
accumulating until it reach the preset value of N, at that time WDT will be activated, and PLC will be shut
down. If trigger the WDT once every time before the WDT time N has been reached, then WDT will never
be activated. PLC can use this feature to ensure the safety of the system. Each time when PLC enters into
system housekeeping after finished the program scanning and I/O refresh, it will usually trigger WDT once,
so if the system functions normally and scan time does not exceed WDT time then WDT is never activated.
However, if CPU is damaged and unable to trigger WDT, or the scan time is too long, then there will not be
enough time to trigger WDT within the period N, WDT will be activated and will shut off PLC.

 In some applications, when you set the WDT time (FUN90) to desire, the scan time of your program in certain
situations may temporarily exceed the preset time of WDT. This situation can be anticipated and allowed for,
and you naturally do not wish PLC to shut down for this reason. You can use this instruction to trigger WDT
once and avoid the activation of WDT. This is the main purpose of this instruction.

High Speed Counting/Timing Instruction

7 -89

FUN 92 D P
HSCTR

HARDWARE HIGH SPEED COUNTER CURRENT VALUE (CV) ACCESS
FUN 92 D P

HSCTR

CN : Hardware high speed counter number

0: HSC0 or HST0
1: HSC1 or HST1
2: HSC2 or HST2
3: HSC3 or HST3
4: HSTA

 The HSC0～HSC3 counters of FBs-PLC are 4 sets of 32bit high speed counter with the variety counting
modes such as up/down pulse, pulse-direction, AB-phase. All the 4 high speed counters are built in the ASIC
hardware and could perform count, compare, and send interrupt independently without the intervention of the
CPU. In contrast to the software high speed counters HSC4～HSC7, which employ interrupt method to
request for CPU processing, hence if there are many counting signals or the counting frequency is high, the
PLC performance (scanning speed) will be degraded dramatically. Since the current values CV of HSC0～
HSC3 are built in the internal hardware circuits of ASIC, the user control program (ladder diagram) cannot
retrieve them directly from ASIC. Therefore, it must employ this instruction to get the CV value from hardware
HSC and put it into the register which control program can access. The following is the arrangement of CV,
PV in ASIC and their corresponding CV, PV registers of PLC for HSC0~HSC3.

 PLC register ASIC
 DR4096 CV
 CV register H L

HSC0 DR4098 PV HSC0
 PV register H L
 DR4100 CV
 CV register H L

HSC1 DR4102 PV HSC1
 PV register H L
 DR4104 CV
 CV register H L

HSC2 DR4106 PV HSC2
 PV register H L
 DR4108 CV
 CV register H L

HSC3 DR4110 PV HSC3
 PV register H L
 DR4152 CV
 CV register H L

HSTA R4154 PV HSTA
 PV register

 When access control “EN” =1 or changes from 0→1(P instruction), will gets the CV value of HSC designated
by CN from ASIC and puts into the HSC corresponding CV register (i.e. the CV of HSC0 will be read and put
into DR4096 or the CV of HSC1 will be read and put into DR4100).

 Although the PV within ASIC has a corresponding PV register in CPU, but it is not necessary to access it
(actually it can’t be) for that the PV value within ASIC comes from the PV register in CPU.

 HSTA is a timer, which use 0.1ms as its time base. The content of CV represents elapse time counting at
0.1mS tick.

 For detailed applications, please refer to Chapter 10 “The high speed counter and high speed timer of
FBs-PLC”.

High Speed Counting/Timing Instruction

7 -90

FUN 93 D P
HSCTW

HARDWARE HIGH SPEED COUNTER CURRENT VALUE AND PRESET
VALUE WRITING

FUN 93 D P
HSCTW

S : The source data for writing

CN : Hardware high speed counter to be written
0: HSC0 or HST1
1: HSC1 or HST2
2: HSC2 or HST3
3: HSC3 or HST4
4: HSTA

D : Write target (0 represents CV, 1 represents PV)

 Please refer first to FUN92 for the relation between the CV or PV value of HSC0～HSC3 and HSTA within
ASIC and their corresponding CV and PV registers in CPU.

 When write control “EN”=1 or changes from 0→1 (P instruction), it writes the content of CV or PV register of
high speed counter designed by CN of CPU, to the corresponding CV or PV of HSC within ASIC.

 It is quit often to set the PV value for most application program, When the count value reaches the preset
value, the counter will send out interrupt signal immediately. By way of the interrupt service program, you can
implement different kinds of precision counting or positioning control.

 When there is an interrupt of power supply for FBs-PLC, the values of current value registers CV of HSC0～
HSC3 within ASIC will be read out and wrote into the HSC0～HSC3 CV registers (with power retentive
function) of CPU automatically. When power comes up, these CV values will be restored to ASIC. However,
if your application demands that when power is on, the values should be cleared to 0 or begin counting from a
certain value, then you have to use this instruction to write in the CV value for HSC in ASIC.

 When write a non-zero value into the PV register of HSTA will cause the HSTAI interrupt subroutine to be
executed for every PV×0.1ms.

 For detailed applications, please refer Chapter 10 “The high speed counter and high speed timer of
FBs-PLC”.

EN S :

D :

EN

EN

D :

S :
M1

M0

M0 93D.HSCTW

92

93D.HSCTW

CN : HSC0
CV

0

HSC0HSCTR

CN :
R500
HSC0

PV

 As the program in the left diagram, when M0 changes
from 0→1, it clears the current value of HSC0 to 0,
and writes into ASIC hardware through FUN93.

 When M0 is 0, it reads out the current counting value.

 When M1 changes from 0→1, it moves DR500 to
DR4098, and writes the preset value into ASIC
hardware through FUN93.

 Whenever the current value equals to the DR500,
The HSC0I interrupt sub program will be executed.

Report Printing Instructions

7 -91

FUN 94 P
ASCWR

ASCII WRITE
FUN 94 P
ASCWR

MD: Output mode
=0, output to communication port1.
others, reserved for future usage.

S : Starting register of file data.

Pt : Starting working register for this instruction
instance. It taken up 8 registers and can’t
be reused in other part of program.

Range

Ope-
rand

WX WY WM WS TMR CTR HR IR OR SR ROR DR K
WX0
∣

WX240

WY0
∣

WY240

WM0
∣

WM1896

WS0
∣

WS984

T0
∣

T255

C0
∣

C255

R0
∣

R3839

R3840
∣

R3903

R3904
∣

R3967

R3967
∣

R4167

R5000
∣

R8071

D0
∣

D4095

0
∣
1

MD ○
S ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
Pt ○ ○ ○ ○ ○ ○ ○ ○* ○* ○

 When MD=0 and output control “ENU” changes from 0→1, it transmits the ASCII data which starting from S to
the communication port 1 (Port1), until reach end of file.

 S file data can be edited with the programming software PROLADDER or WinProladder (please refer to the
explanation of Chapter 14 “ASCII function application”.). If necessary the user can also edit the ASCII file
directly by change the value of data registers. However, the edited data must be follow the ASCII file format
(the details described in chapter 14), otherwise, this instruction will halt the transmission and set the error flag
“ERR” to 1. If the entire file is correctly and successfully transmitted, then the output is completed and “DN”
is set to 1.

 The control input of this instruction is of positive edge triggered. Once “ENU” changes from 0→1 then this
instruction starts the execution, until finished the transmission of the entire file then the execution is completed.
During the transmission, the action flag “ACT” will be kept at 1 all the time. Only when output pause, error, or
abort occurs, will it change back to 0.

 This instruction can be repeatedly used, but only one will be executed (transmit data) at any certain time. It is
the obligation of user to make sure the right execution sequence.

 While this instruction is in execution, if the pause “PAU” is 1, this instruction will pause the transmission of file
data. It will resume transmission when the pause “PAU” backs to 0.

 While this instruction is in execution, if the abort “ABT” is 1, this instruction will abandon the transmission of
file data, and then it is able to take next instruction for execution.

 or detail applications, please refer to Chapter 14 “The Application of ASCII file output function”.

Report Printing Instructions

7 -92

FUN 94
ASCWR

ASCII WRITE
FUN 94
ASCWR

 Interface signals:
M1927: This signal is control by CPU, it is applied in ASCWR MD:0

: ON, it represents that the RTS (connect to the CTS of PLC) of the printer is “False”.
 I.e. the printer is not ready or abnormal.
: OFF, it represents that the RTS of the Printer is “True”; Printer is Ready.

Note: Using the M1927 associates with timer can detect if the printer is abnormal or not.

Slow Up/Slow Down Instructions

7 -93

FUN 95 P
RAMP

RAMP FUNCTION FOR D/A OUTPUT
FUN 95 P

RAMP

Tn : Timer for ramp function
PV : Preset value of ramp timer (the unit is 0.01 second)

or the increment value of every 0.01 second
SL : Lower limit value

(ramp floor value).
SU : Upper limit value

(ramp ceiling value).
D : Register storing current ramping value.
D+1 : Working register
SU, SL could be positive or negative value when incorporate
with AO module application.

Range

Ope-
rand

WX WY WM WS TMR CTR HR IR OR SR ROR DR K
WX0
∣

WX240

WY0
∣

WY240

WM0
∣

WM1896

WS0
∣

WS984

T0
∣

T255

C0
∣

C255

R0
∣

R3839

R3840
∣

R3903

R3904
∣

R3967

R3968
∣

R4167

R5000
∣

R8071

D0
∣

D4095

16-bit
+/- number

Tn ○
PV ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
SL ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
SU ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
D ○ ○ ○ ○ ○ ○ ○ ○ ○* ○

Description

 Tn must be a 0.01 sec time base timer and never used in other part of program.

 PV is the preset value of ramp timer. Its unit is 10ms (0.01 second).

 When input control “ENU” changes from 0→1, it first reset the timer Tn to 0.
When “U/D”=1 it will load the value of SL to register D. And when M1974 = 0 it will be increased by SU−SL /
PV every 0.01 sec or when M1974 = 1 it will increase by PV every 0.01 sec. When the D value reaches the
SU value the output “ASU” =1.
When “U/D”=0 it will load the value of SU to register D. When M1974 = 0 it will be decreased by SU−SL / PV
every 0.01 sec or when M1974 = 1 it will be decreased by PV every 0.01 sec. When the D value reaches the
SL value the output “ASL” =1.

 The ramping direction(U/D) is determined at the time when input control “ENU” changes from 0→1. After the
output D start to ramp, the change of U/D is no effect.

 If it is required to pause the ramping action, it must let the input control “PAU” = 1; when “PAU”=0, and the
ramping action is not completed, it will continue to complete the ramping action.

 The value of SU must be larger than SL, otherwise the ramp function will not be performed, and the output
“ERR” will set to 1.

 This instruction use the register D to store the output ramping value; if the application use the D/A module to
send the speed command, then speed command can be derived from the RAMP function to get a more
smooth movement.

 In addition to use register D to store the ramping value, this instruction also used the register D+1 to act as
internal working register; therefore the other part of program can not use the register D+1.

Slow Up/Slow Down Instructions

7 -94

FUN 95 P
RAMP

RAMP FUNCTION FOR D/A OUTPUT
FUN 95 P

RAMP

 Program example

M0
EN Tn : T20 ERR

M100

PV : R100
SL :

D :
SU :

M1
PAU

M2
U/D

ASL
M101

ASU

R101
R102
R103

M102

M0
EN

8.MOV

D : R3904

S : R103

95.RAMP

Move the ramping value to AO output register
R3904

T20: Ramp timer (timer with 0.01 second time base)
R100: preset value of ramp timer (the unit is 0.01 second, 100 for a second).
R101: Lower limit value.
R102: Upper limit value.
R103: Register storing current ramp value.
R104: Working register

 If M1974=0, When input control M0 changes from 0→1, it first reset the timer T20 to 0. If M2=1, it will load
the R101 (lower limit) value into the R103, and it will increase the output with fixed value (R102-R101 / R100)
for every 0.01 second and stores it to register R103. When the T2 timer going up to the preset value R100,
the output value equals to R102, and the output M102 will set to 1. If M2=0, will load the R102 (upper limit)
value into the R103, and it will decrease the output amount with fixed ratio (R102-R101 / R100) for every 0.01
second and store it to register R103. The T2 timer going up to the preset value R100, the output value equals
to R102, and the output M101 will set to 1.

 M1=1, pause the ramping action.

 The value of R102 must be greater than R101, otherwise the ramp action will not be performed, and the
output M100 will set to 1.

SU

SL

PV PV
t

Slow Up/Slow Down Instruction

7 -95

FUN98
RAMP2

TRACKING TYPE RAMP FUNCTION FOR D/A OUTPUT
FUN98
RAMP2

 98.RAMP2

 Execut ion EN Om : ACC

 Ta :

 Td : DEC

 Rt :

 Rc :

 WR :

Om：Maximum output; range from 0~65535

 Ta ：The acceleration time for the output from 0 up to
maximum;

Range from 0~65000, unit is in mS
 Td ：The deceleration time for the output from

maximum down to 0;
Range from 0~65000, unit is in mS

 Rt ：Register of target output;
 Range from 0~65535
 Rc ：Register of current output, it is used for analog

output
 WR：Starting address of working registers, it needs 4

registers

＊This instruction can be supported in PLC OS
firmware V4.60 or late

Range

Operand

HR OR ROR DR K
R0
∣

R3839

R3904
∣

R3967

R5000
∣

R8071

D0
∣

D3999
16bit

Om ○ ○ ○ ○ 0~65535
Ta ○ ○ ○ ○ 0~65000
Td ○ ○ ○ ○ 0~65000
Rt ○ ○ ○ ○
Rc ○ ○ ○ ○
WR ○ ○ ○* ○

● When execution 〝EN〞=0, current output value (Rc) will be 0 immediately; the output indicators

ACC=0 and DEC=0.
● When execution 〝EN〞=1, this instruction being executed; it will output current value (Rc) first, and

then compare the target output value (Rt) with current output value (Rc) every scan; if the target
output value is greater than current output value, the current output will be increased according to
the rate, which is decided by the settings of acceleration time (Ta) and maximum output (Om), till
current output value is equal to the target output value (ACC=1 during this time); if the target
output value is less than current output value, the current output will be decreased according to
the rate, which is decided by the settings of deceleration time (Td) and maximum output (Om), till
current output value is equal to the target output value (DEC=1 during this time).

● If the setting value of target output (Rt) is greater than maximum output(Om), the output value will
be clamped by the maximum value.

● It can have smooth activity for acceleration and deceleration control via the execution of this
instruction by using current output value (Rc) for analog output (R39044~R3967).

● The setting value of target output (Rt) needs to stay two scan times at least for proper operation.
● It needs 4 registers for working, they can not be repeated in use。
● This instruction is for positive value operation, but it also can have negative output by short and

easy application program for help. Please see example 2.

Slow Up/Slow Down Instruction

7 -96

FUN98
RAMP2

TRACKING TYPE RAMP FUNCTION FOR D/A OUTPUT
FUN98
RAMP2

 Example 1：Positive output for ACC/DEC control

D10 ：Setting of maximum output, it is 16383
D0 ：The acceleration time for the output from 0 up to maximum, it is 30000mS
D1 ：The deceleration time for the output from maximum down to 0, it is 20000mS
D100：Setting of target output value, it is 8192
R3904：Register of current output, it is used for analog output
D1000~D1003：Working registers

Description: When M0=0, current output value is 0 immediately (No ramp).
When M0=1, it will output the value of R3904 first; and then compare the target output
value (D100) with current output value (R3904) every scan; if D100＞R3904, the
current output value of R3904 will be increased according to the rate of 16383/30000
(Om=16383, Ta=30000), till R3904=D100 (ACC=1 during this time); if D100＜R3904,
the current output value of R3904 will be decreased according to the rate of
16383/20000 (Om=16383, Td=20000), till R3904=D100 (DEC=1 during this time).

t

Om

Ta Td

Rc

Rt

Rt Rt

Rt

Slow Up/Slow Down Instruction

7 -97

FUN98
RAMP2

TRACKING TYPE RAMP FUNCTION FOR D/A OUTPUT
FUN98
RAMP2

Example 2：Both positive and negative output for ACC/DEC control

D10 ：Setting of maximum output, it is 8191
D0 ：The acceleration time for the output from 0 up to maximum, it is 20000mS
D1 ：The deceleration time for the output from maximum down to 0, it is 10000mS
D100：Setting of target output value, it is 0
D200：Register of current output, it is used for analog output
D1000~D1003：Working registers
Description: When M0=0, current output value is 0 immediately (No ramp).

When M0=1, it will output the value of D200 first; and then compare the target output
value (D100) with current output value (D200) every scan; if D100＞D200, the current
output value of D200 will be increased according to the rate of 8191/20000 (Om=8191,
Ta=20000), till D200=D100 (ACC=1 during this time); if D100＜D200, the current
output value of D200 will be decreased according to the rate of 8191/10000 (Om=8191,
Td=10000), till D200=D100 (DEC=1 during this time).

 M100=1, positive output control; M101=1, negative output control.
The target output (D100) is always positive value from 0~65535.

Slow Up/Slow Down Instruction

7 -98

FUN98
RAMP2

TRACKING TYPE RAMP FUNCTION FOR D/A OUTPUT
FUN98
RAMP2

Rc

t

Om

Ta Td

Rc

Rt Rt Rt

Rt

-Om

Table Instructions

7-99

Table Instructions

Fun No. Mnemonic Functionality Fun No. Mnemonic Functionality

100 R→T Register to table data move 107 T_FIL Table fill

101 T→R Table to register data move 108 T_SHF Table shift

102 T→T Table to table data move 109 T_ROT Table rotate

103 BT_M Block table move 110 QUEUE Queue

104 T_SWP Block table swap 111 STACK Stack

105 R-T_S Register to table search 112 BKCMP Block compare

106 T-T_C Table to table compare 113 SORT Data Sort

● A table consists of 2 or more consecutive registers (16 or 32 bits). The number of registers that comprise the
table is called the table length (L). The operation object of the table instructions always takes the register as
unit (i.e. 16 or 32 bit data).

● The operation of table instructions are used mostly for data processing such as move, copy, compare, search
etc, between tables and registers, or between tables. These instructions are convenient for application.

● Among the table instructions, most instructions use a pointer to specify which register within a table will be
the target of operation. The pointer for both 16 and 32-bit table instructions will always be a 16-bit register.
The effective range of the pointer is 0 to L-1, which corresponds to registers T0 to TL-1 (a total of L registers).
The table shown below is a schematic diagram for 16-bit and 32-bit tables.

● Among the table operations, shift left/right, rotate left/right operations include a movement direction. The
direction toward the higher register is called left, while the direction toward the lower register is called right, as
shown in the diagram below.

 Table length

︷

Pointer Pr

 Table length

︷

Pointer Pr
 4 ──┐

│
│
│
│

(right)│
│
│
│
│

←─┘

2 ──┐
│
│
│
│

(right)│
│
│
│
│

←─┘

 B15 B0 B15 B0

(right)
B15 B0 B31 B0

T0 R0 T0 R1 R0
T1 R1 T1 R3 R2
T2 R2 T2 R5 R4
T3 R3 T3 R7 R6
T4 R4 T4 R9 R8
．
．
．
．
．
．

．
．
．
．
．
．

．
．
．
．
．
．

．
．
．
．
．
．

TL−1 RL-1 (left) TL−1 R 2L−1 R 2L−2 (left)

16bit table 32bit table

T T

Table Instructions

7-100

FUN100 D P
R→T

REGISTER TO TABLE MOVE
FUN100 D P

R→T

EN RS : END
Td :
L :
Pr :

INC

CLR

ERR

Ladder symbol

Move control

Pointer increment

Pointer clear

Move to end

Pointer error

100DP.R T

Rs : Source data , can be constant or register

Td : Source register for destination table

L : Length of destination table

Pr : Pointer register

Rs, Td can associate with V, Z, P0~P9 index
register as indirect addressing

Range

Ope-
rand

WX WY WM WS TMR CTR HR IR OR SR ROR DR K XR
WX0

∣
WX240

WY0
∣

WY240

WM0
∣

WM1896

WS0
∣

WS984

T0
∣

T255

C0
∣

C255

R0
∣

R3839

R3840
∣

R3903

R3904
∣

R3967

R3968
∣

R4167

R5000
∣

R8071

D0
∣

D4095

16/32bit
+/-

number

V、Z

P0~P9
Rs ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
Td ○ ○ ○ ○ ○ ○ ○ ○* ○* ○ ○
L ○ ○* ○ 2~2048
Pr ○ ○ ○ ○ ○ ○ ○ ○* ○* ○

● When move control "EN" = 1 or transition from 0 to 1(P instruction), the contents of the source register Rs
will be written onto the register Tdpr indicated by the pointer Pr within the destination table Td (length is L).
Before executing, this instruction will first check the pointer clear "CLR" input signal. If "CLR" is 1, it will first
clear the pointer Pr, and then carry out the move operation. After the move has been completed, it will then
check the Pr value. If the Pr value has already reached L-1 (point to the last register in the table) then it will
only set the move-to-end flag "END" to 1, and finish execution of this instruction. If the Pr value is less than
L-1, then it must again check the pointer increment "INC" input signal. If "INC" is 1, then Pr value will be also
increased. Besides, pointer clear "CLR" is able to operate independently, without being influenced by other
input.

● The effective range of the pointer is 0 to L-1. Beyond this range, the pointer error "ERR" will be set to 1, and
this instruction will not be performed.

X1
EN RS : R 0 END

Td : R 10
L :
Pr :

INC

CLR

ERR8
R 50

100P.R T The example at left at the very beginning pointer Pr = 4,
the entire content of table Td is 0, and the Rs value is
8888. The diagram below shows the operation results
when X1 have the transition of 0→1 twice.

 Because INC is 1, Pr will increase by 1 each time the
instruction is executed.

 Pr Pr Pr
 4 R50 5 R50 6 R50

 Td Td Td
 0 0 0 0 R10(T0)

X0＝
(First)

0 0 0 0 R10

X0＝
(Second)

0 0 0 0 R10
 0 0 0 0 R11(T1) 0 0 0 0 R11 0 0 0 0 R11
 Rs 0 0 0 0 R12(T2) 0 0 0 0 R12 0 0 0 0 R12

R0 8 8 8 8

0 0 0 0 R13(T3) 0 0 0 0 R13 0 0 0 0 R13
 0 0 0 0 R14(T4) 8 8 8 8 R14 8 8 8 8 R14
 0 0 0 0 R15(T5) 0 0 0 0 R15 8 8 8 8 R15
 0 0 0 0 R16(T6) 0 0 0 0 R16 0 0 0 0 R16
 0 0 0 0 R17(T7) 0 0 0 0 R17 0 0 0 0 R17

Before First time result Second time result

Table Instructions

7 -101

FUN101 D P
T→R

TABLE TO REGISTER MOVE
FUN101 D P

T→R

EN TS : END

Rd :

L :

Pr :INC

CLR

ERR

Ladder symbol

Move control

Pointer increment

Pointer clear

Move to end

Pointer error

101DP.T R
Ts : Source table starting register
L : Length of source table
Pr : Pointer register
Rd : Destination register
Ts, Rd may combine with V, Z, P0~P9 to
serve indirect address application

Range

Ope-
rand

WX WY WM WS TMR CTR HR IR OR SR ROR DR K XR
WX0

∣
WX240

WY0
∣

WY240

WM0
∣

WM1896

WS0
∣

WS984

T0
∣

T255

C0
∣

C255

R0
∣

R3839

R3840
∣

R3903

R3904
∣

R3967

R3968
∣

R4167

R5000
∣

R8071

D0
∣

D4095

16/32bit
+/-

number

V、Z

P0~P9
Ts ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
L ○ ○* ○
Pr ○ ○ ○ ○ ○ ○ ○ ○* ○* ○ 2~2048
Rd ○ ○ ○ ○ ○ ○ ○ ○* ○* ○ ○

 When move control "EN" = 1 or transition from 0 to 1 (P instruction), the value of the register Tspr specified by
pointer Pr within source table Ts (length is L) will be written into the destination register Rd. Before executing,
this instruction will first check the input signal of pointer clear "CLR". If "CLR" is 1, it will first clear Pr and then
carry out the move operation. After completing the move operation, it will then check the value of Pr. If the Pr
value has already reached L-1 (point to the last register in the table), then it sets the move-to-end flag to 1, and
finishes executing of this instruction. If Pr is less than L-1, it check the status of "INC". If "INC" is 1, then it will
increase Pr and finish the execution of this instruction. Besides, pointer clear "CLR" can execute independently
and is not influenced by other inputs.

 The effective range of the pointer is 0 to L-1. Beyond this range the pointer error "ERR" will be set to 1 and this
instruction will not be carried out.

X0
EN TS : R 0 END

Rd :
R 19

L :
Pr :INC

CLR

ERR
9

R 20

101P.T R

 In the example at left, at the very beginning Pr = 7 and Ts
and Rd are as shown at left in the diagram below. When X0
have a transition from 0→1 twice, the results are shown at
right in the diagram below.

 At the second time execution, the pointer has already
reached to the end so there will be no increment.

 Ts Pr Pr Pr
R0(T0) 1 1 1 1 7 R19

X0＝
(first)

8 R19

X0＝
(second)

8 R19
R1(T1) 2 2 2 2
R2(T2) 3 3 3 3
R3(T3) 4 4 4 4 Rd Rd Rd
R4(T4) 5 5 5 5 0000 R20 8 8 8 8 R20 9 9 9 9 R20
R5(T5) 6 6 6 6

R6(T6) 7 7 7 7 END END END
R7(T7) 8 8 8 8 0 0 1
R8(T8) 9 9 9 9

Before execution First time execution Second time execution

Table Instructions

7-102

FUN102 D P
T→T

TABLE TO TABLE MOVE
FUN102 D P

T→T

EN TS : END
Td :
L :
Pr :

INC

CLR

ERR

Ladder symbol

Move control

Pointer increment

Pointer clear

Move to end

Pointer error

102DP.T T
Ts : Starting number of source table register
Td : Starting number of destination table

register
L : Table (Ts and Td) length
Pr : Pointer register
Ts, Td may combine with V, Z, P0~P9 to
serve indirect address application

Range

Ope-
rand

WX WY WM WS TMR CTR HR IR OR SR ROR DR K XR
WX0

∣
WX240

WY0
∣

WY240

WM0
∣

WM1896

WS0
∣

WS984

T0
∣

T255

C0
∣

C255

R0
∣

R3839

R3840
∣

R3903

R3904
∣

R3967

R3968
∣

R4167

R5000
∣

R8071

D0
∣

D4095

2
∣

2048

V、Z

P0~P9
Ts ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

Td ○ ○ ○ ○ ○ ○ ○ ○* ○* ○ ○

L ○ ○* ○ ○
Pr ○ ○ ○ ○ ○ ○ ○ ○* ○* ○

 When move control "EN" = 1 or have a transition from 0 to 1(P instruction), the register Tspr pointed by pointer

Pr within the source table will be moved to a register Tdpr, which also pointed by the pointer Pr in the
destination table. Before execution, it will first check the input signal of pointer clear "CLR". If "CLR" is 1, it will
first clear Pr to 0 and then do the move (in this case Ts0→Td0). After the move action has been completed it
will then check the value of pointer Pr. If the Pr value has already reached L-1 (point to the last register on the
table), then it will set the move-to-end flag "END" to 1 and finish executing of this instruction. If the Pr value is
less than L-1, it will check the status of "INC". If "INC" is 1, then the Pr value will be increased by 1 before
execution. Besides, pointer clear "CLR" can execute independently, and will not be influenced by other input.

 The effective range of the pointer is 0 to L-1. Beyond this range, the pointer error flag "ERR" will be set to 1,
and this instruction will not be carried out.

X0
EN TS : R 0 END

Td : R 10
L :
Pr :

INC

CLR

ERR10
R 20

102P.T T The diagram at left below is the status before execution.
When X0 from 0→1, the content of R5 in Ts table will copy to
R15 and pointer R20 will be increased by 1.

 Pr Pr
 R20 5 R20 6
 Ts Td Td

R0 1 1 1 1 R10 0 0 0 0

X0＝

R10 0 0 0 0
R1 1 1 1 1 R11 0 0 0 0 R11 0 0 0 0
R2 1 1 1 1 R12 0 0 0 0 R12 0 0 0 0
R3 1 1 1 1 R13 0 0 0 0 R13 0 0 0 0
R4 1 1 1 1 R14 8 8 8 8 R14 8 8 8 8
R5 1 1 1 1 R15 0 0 0 0 R15 1 1 1 1
R6 1 1 1 1 R16 0 0 0 0 R16 0 0 0 0
R7 1 1 1 1 R17 0 0 0 0 R17 0 0 0 0
R8 1 1 1 1 R18 0 0 0 0 R18 0 0 0 0
R9 1 1 1 1 R19 0 0 0 0 R19 0 0 0 0

Before execution result

Table Instructions

7 -103

FUN103 D P
BT_M

BLOCK TABLE MOVE
FUN103 D P

BT_M

Ts :Starting register for source table

Td : Starting register for destination table

L: Lengths of source and destination tables

Ts, Td may combine with V, Z, P0~P9 to serve indirect

Range

Ope-
rand

WX WY WM WS TMR CTR HR IR OR SR ROR DR K XR
WX0

∣
WX240

WY0
∣

WY240

WM0
∣

WM1896

WS0
∣

WS984

T0
∣

T255

C0
∣

C255

R0
∣

R3839

R3840
∣

R3903

R3904
∣

R3967

R3968
∣

R4167

R5000
∣

R8071

D0
∣

D4095

2
∣

256

V、Z

P0~P9
Ts ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
Td ○ ○ ○ ○ ○ ○ ○ ○* ○* ○ ○
L ○ ○* ○ ○

 In this instruction the source table and destination table are the same length. When this instruction was
executed all the data in the Ts table is completely copied to Td. No pointer is involved in this instruction.

 When move control "EN" = 1 or have a transition from 0 to 1 (P instruction), all the data from source table Ts
(length L) is copied to the destination table Td, which is the same length.

 One table is completely copied every time this instruction is executed, so if the table length is long, it will be
very time consuming. In practice, P modifier should be used to avoid time waste caused by each scan
repeating the same movement action.

X0
EN TS : R 0

Td : R 10
L : 10

103P.BT_M

 The diagram at left below is the status before execution. When
X0 from 0→1, the content of R0~R9 in Ts table will copy to
R10~R19.

 Ts Td Td
R0 0 0 0 0 ──→ R10 0 0 0 0

X0＝

R10 0 0 0 0
R1 1 1 1 1 ──→ R11 0 0 0 0 R11 1 1 1 1
R2 2 2 2 2 ──→ R12 0 0 0 0 R12 2 2 2 2
R3 3 3 3 3 ──→ R13 0 0 0 0 R13 3 3 3 3
R4 4 4 4 4 ──→ R14 0 0 0 0 R14 4 4 4 4
R5 5 5 5 5 ──→ R15 0 0 0 0 R15 5 5 5 5
R6 6 6 6 6 ──→ R16 0 0 0 0 R16 6 6 6 6
R7 7 7 7 7 ──→ R17 0 0 0 0 R17 7 7 7 7
R8 8 8 8 8 ──→ R18 0 0 0 0 R18 8 8 8 8
R9 9 9 9 9 ──→ R19 0 0 0 0 R19 9 9 9 9

Before executed
Execute

result

Table Instructions

7-104

FUN104 D P
T_SWP

BLOCK TABLE SWAP
FUN104 D P

T_SWP

Ta : Starting register of Table a
Tb : Starting register of Table b
L : Lengths of Table a and b
Ts, Td may combine with V, Z, P0~P9 to serve
indirect address application

Range

Ope-
rand

WY WM WS TMR CTR HR OR SR ROR DR K XR
WY0

∣
WY240

WM0
∣

WM1896

WS0
∣

WS984

T0
∣

T255

C0
∣

C255

R0
∣

R3839

R3904
∣

R3967

R3968
∣

R4167

R5000
∣

R8071

D0
∣

D4095

2
∣

256

V、Z

P0~P9
Ta ○ ○ ○ ○ ○ ○ ○ ○* ○* ○ ○
Tb ○ ○ ○ ○ ○ ○ ○ ○* ○* ○ ○
L ○ ○* ○ ○

 This instruction swaps the contents of Tables a and b, so the table must be the same length, and the registers
in the table must of write able. Since a complete swap is done with each time the instruction is executed, no
pointer is needed.

 When move control "EN" = 1 or have a transition from 0 to 1 (P instruction), the contents of Table a and Table
b will be completely swapped.

 This instruction will swap all the registers specified in L each time the instruction is executed, so if the table
length is big, it will be very time consuming, therefore P instruction should be used.

X0
EN Ta : R 0

Tb : R 10
L : 10

104P.T_SWP

 The diagram at left below is the status before execution.
When X0 from 0→1, the contents of R0~R9 in Ts table will
swap with R10~R19.

 Ta Tb Ta Tb
R0 0 0 0 0 R10 1 1 1 1

X0＝

R0 1 1 1 1 R10 0 0 0 0
R1 0 0 0 0 R11 1 1 1 1 R1 1 1 1 1 R11 0 0 0 0
R2 0 0 0 0 R12 1 1 1 1 R2 1 1 1 1 R12 0 0 0 0
R3 0 0 0 0 R13 1 1 1 1 R3 1 1 1 1 R13 0 0 0 0
R4 0 0 0 0 R14 1 1 1 1 R4 1 1 1 1 R14 0 0 0 0
R5 0 0 0 0 R15 1 1 1 1 R5 1 1 1 1 R15 0 0 0 0
R6 0 0 0 0 R16 1 1 1 1 R6 1 1 1 1 R16 0 0 0 0
R7 0 0 0 0 R17 1 1 1 1 R7 1 1 1 1 R17 0 0 0 0
R8 0 0 0 0 R18 1 1 1 1 R8 1 1 1 1 R18 0 0 0 0
R9 0 0 0 0 R19 1 1 1 1 R9 1 1 1 1 R19 0 0 0 0

Before executed After executed

Table Instructions

7-105

FUN105 D P
R-T_S

REGISTER TO TABLE SEARCH
FUN105 D P

R-T_S

Rs : Data to search, It can be a constant
or a register

Ts : Starting register of table being
searched

L : Label length
Pr : Pointer of table
Rs, Ts may combine with V, Z, P0~P9 to
serve indirect address application

Range

Ope-
rand

WX WY WM WS TMR CTR HR IR OR SR ROR DR K XR
WX0

∣
WX240

WY0
∣

WY240

WM0
∣

WM1896

WS0
∣

WS984

T0
∣

T255

C0
∣

C255

R0
∣

R3839

R3840
∣

R3903

R3904
∣

R3967

R3968
∣

R4167

R5000
∣

R8071

D0
∣

D4095

16/32-bit
+/- number

V、Z

P0~P9
Rs ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
Ts ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
L ○ ○* ○ 2~256
Pr ○ ○ ○ ○ ○ ○ ○ ○* ○* ○

 When search control "EN" = 1 or has a transition from 0 to 1 (P instruction), will search from the first register of
Table Ts (when "FHD" = 1 or Pr value has reached L-1), or from the next register (Tspr + 1) pointed by the
pointer within the table ("FHD" = 0, while Pr value is less than L-1) to find the first data different with Rs(when
D/S = 1) or find the first data the same with Rs (when D/S = 0). If it find a data match the condition it will
immediately stop the search action, and the pointer Pr will point to that data and found objective flag "FND" will
set to 1. When the searching has searched to the last register of the table, the execution of the instruction will
stop, whether it was found or not. In that case the search-to-end flag "END" will be set to 1 and the Pr value will
stop at L-1. When this instruction next time is executed, Pr will automatically return to the head of the table (Pr
= 0) before the search begin.

 The effective range of Pr is 0 to L-1. If the value exceeds this range then the pointer error flag "ERR" will
change to 1, and this instruction will not be carried out.

X0
RS : 5555

105P.R-T_S

END
TS : R 0
L :
Pr :

FHD

D/S ERR

10
R 20

FNDEN
 The instruction at left is searching the table for a register with the

value 5555 (because D/S = 0, it is searching for same value).
Before execution, the pointer point to R2, but the starting point of
the search is Pr + 1 (i.e. it starts from R3). After X0 has transition
from 0→1 3 times, the results of each search may be obtained
as shown in the diagram below.

Pr Ts Pr FN EN

R20 2 R0 5 5 5 5 X0＝
(First)

R20 6 1 0
R1 0 0 0 0

R2 5 5 5 5
Start
point Rs R3 2 2 2 2 ← Pr FN EN

5 5 5 5 R4 3 3 3 3 X0＝
(Second)

R20 9 0 1
R5 4 4 4 4
R6 5 5 5 5
R7 6 6 6 6 Pr FN EN

R8 7 7 7 7 X0＝
(Third)

R20 0 1 0
R9 8 8 8 8

Before execution After execution

Table Instructions

7-106

FUN106 D P
T-T_C

TABLE TO TABLE COMPARE
FUN106 D P

T-T_C

Ta : Starting register of Table a
Tb : Starting register of Table b
L : Lengths of Table
Pr : Pointer
Ta, Tb may combine with V, Z, P0~P9 to
serve indirect address application

Range

Ope-
rand

WX WY WM WS TMR CTR HR IR OR SR ROR DR K XR
WX0

∣
WX240

WY0
∣

WY240

WM0
∣

WM1896

WS0
∣

WS984

T0
∣

T255

C0
∣

C255

R0
∣

R3839

R3840
∣

R3903

R3904
∣

R3967

R3968
∣

R4167

R5000
∣

R8071

D0
∣

D4095

2
∣

256

V、Z

P0~P9
Ta ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

Tb ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

L ○ ○* ○ ○
Pr ○ ○ ○ ○ ○ ○ ○ ○* ○* ○

 When comparison control "EN" = 1 or has a transition from 0 to 1(P instruction), then starting from the first
register in the tables Ta and Tb (when "FHD" = 1 or Pr value has reached L-1) or starting from the next pair of
registers (Tapr+1 and Tbpr+1) pointed by Pr ("FHD" = 0, while Pr is less than L-1), this instruction will search
for pairs of registers with different values (when "D/S" = 1) or the same value (when "D/S" = 0). When search
found (either different or the same), it will immediately stop the search and the pointer Pr will point to the
register pairs met the search criteria. The found flag "FND" will be set to 1. When it has searched to the last
register of the table, the instruction will stop executing. whether it found or not. The compare-to-end flag "END"
will be set to 1, and the pointer value will stop at L-1. When this instruction is executed next time, Pr will
automatically return to the head of the table to begin the search. The effective range of Pr is 0 to L-1. The Pr
value should not changed by other programs during the operation. As this will affect the result of the search. If
the Pr value not in the effective range, the pointer error flag "ERR" will be set to 1, and this instruction will not
be carried out.

X0
Ta :

106P.T-T_C

END
Tb : R 11
L :
Pr :

FHD

D/S ERR

10
R 10

FNDR 0EN

 The instruction at left starts from the register next to the register
pointed by the pointer (because "FHD" is 0) to search for register
pairs with different data (because "D/S" is 1) within the 2 tables.
At the very beginning, Pr points to Ta1 and Tb1. There are 3
different pairs of data at the position 1,3,6 of the table.
However, it does not compare from the beginning, and this
instruction will start searching from position 3 downwards. After
X0 has changed 3 times from 0 to 1, the results are shown in the
diagram below.

Pr
R10 1

Ta Tb Pr FN EN

R0 0 0 0 0

R11 0 0 0 0 X0＝
(First)

R10 3 1 0
R1 1 1 1 1 R12 0 0 0 0
R2 2 2 2 2 R13 2 2 2 2 ←

Start
point R3 3 3 3 3 R14 1 2 3 4 Pr FN EN

R4 4 4 4 4 R15 4 4 4 4 X0＝
(Second)

R10 6 1 0
R5 5 5 5 5 R16 5 5 5 5
R6 6 6 6 6 R17 0 0 0 0
R7 7 7 7 7 R18 7 7 7 7 Pr FN EN

R8 8 8 8 8 R19 8 8 8 8 X0＝
(Third)

R10 9 0 1
R9 9 9 9 9 R20 9 9 9 9

Before execution After execution

Table Instructions

7-107

FUN107 D P
T_FIL

TABLE FILL
FUN107 D P

T_FIL

Rs : Source data to fill, can be a constant or a register

Td : Starting register of destination table

L :Table length

Rs, Td may combine with V, Z, P0~P9 to serve indirect
address application

Range

Ope-
rand

WX WY WM WS TMR CTR HR IR OR SR ROR DR K XR
WX0

∣
WX240

WY0
∣

WY240

WM0
∣

WM1896

WS0
∣

WS984

T0
∣

T255

C0
∣

C255

R0
∣

R3839

R3840
∣

R3903

R3904
∣

R3967

R3968
∣

R4167

R5000
∣

R8071

D0
∣

D4095

16/32-bit
+/-

number

V、Z

P0~P9
Ts ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
Td ○ ○ ○ ○ ○ ○ ○ ○* ○* ○ ○
L ○ ○* ○ 2~256

 When fill control "EN" = 1 or has a transition from 0 to 1 (P instruction), the Rs data will be filled into all the
registers of the table Td.

 This instruction is mainly used for clearing the table (fill 0) or unifying the table (filling in the same values). It
should be used with the P instruction.

X0
RS : 5555

107P.T_FIL

Td : R 0
L : 10

EN

 The instruction at left will fill 5555 into the whole table
Td. The results are as shown in the diagram below.

Td Td

 R0 1 5 4 7

X0＝

R0 5 5 5 5
 R1 2 3 1 4 R1 5 5 5 5
 R2 7 7 2 5 R2 5 5 5 5

Rs R3 0 0 1 3 R3 5 5 5 5
5 5 5 5 R4 5 2 4 7 R4 5 5 5 5

 R5 1 9 2 5 R5 5 5 5 5
 R6 6 7 4 4 R6 5 5 5 5
 R7 5 3 1 9 R7 5 5 5 5
 R8 9 7 8 8 R8 5 5 5 5
 R9 2 7 9 6 R9 5 5 5 5

Before execution After execution

Table Instructions

7-108

FUN108 D P
T_SHF

TABLE SHIFT
FUN108 D P

T_SHF

IW : Data to fill the room after shift operation, can be a
constant or a register

Ts : Source table

Td : Destination table storing shift results

L : Lengths of tables Ts and Td

OW : Register to accept the shifted out data

Ts, Td may combine with V, Z, P0~P9 to serve indirect
address application

Range

Ope-
rand

WX WY WM WS TMR CTR HR IR OR SR ROR DR K XR
WX0

∣
WX240

WY0
∣

WY240

WM0
∣

WM1896

WS0
∣

WS984

T0
∣

T255

C0
∣

C255

R0
∣

R3839

R3840
∣

R3903

R3904
∣

R3967

R3968
∣

R4167

R5000
∣

R8071

D0
∣

D4095

16/32-bit
+/-

number

V、Z

P0~P0

IW ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
Ts ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

Td ○ ○ ○ ○ ○ ○ ○ ○* ○* ○ ○

L ○ ○* ○ 2~256
OW ○ ○ ○ ○ ○ ○ ○ ○* ○* ○

 When shift control "EN" = 1 or has a transition from 0 to 1(P instruction), all the data from table Ts will be taken
out and shifted one position to the left (when "L/R" = 1) or to the right (when "L/R" = 0). The room created by
the shift operation will be filled by IW and the results will be written into table Td. The data shifted out will be
written into OW.

X0

TS :

108P.T_SHF

Td :

R 11
L :
OW :

L/R
10

R 10
R 0

IW :

R 0
X1

EN

 In the program at left, Ts and Td is the same table.
Therefore, the table shifts itself and then writes back to
itself (the table must be writ able). It first perform a shift left
operation (let X1 = 1, and X0 go from 0→1) then perform a
shift to right operation (let X1 = 0, and makes X0 go from 0
→1). The result are shown at right in the diagram below.

Ts(Td) (Shift left) (Shift right)
Td(Ts) Td(Ts)

R0 0 0 0 0 R0 1 2 3 4 R0 0 0 0 0
(Shift left) R1 1 1 1 1 R1 0 0 0 0 R1 1 1 1 1

 R2 2 2 2 2 R2 1 1 1 1 R2 2 2 2 2
 R3 3 3 3 3 OW R3 2 2 2 2 R3 3 3 3 3

R10 1 2 3 4 R4 4 4 4 4 R11 ×××× R4 3 3 3 3 R4 4 4 4 4
R5 5 5 5 5 R5 4 4 4 4 R5 5 5 5 5
R6 6 6 6 6 R6 5 5 5 5 R6 6 6 6 6
R7 7 7 7 7 R7 6 6 6 6 R7 7 7 7 7
R8 8 8 8 8 R8 7 7 7 7 R8 8 8 8 8
R9 9 9 9 9 (Shift left) R9 8 8 8 8 R9 1 2 3 4

OW OW
Dotted line is the path for shift right R11 9999 R11 1234

Before execution First time Second time

Table Instructions

7-109

FUN109 D P
T_ROT

TABLE ROTATE
FUN109 D P

T_ROT

Ts : Source table for rotate

Td : Destination table storing results of rotation

L : Lengths of table

Ts, Td may combine with V, Z, P0~P9 to serve indirect
address application

Range

Ope-
rand

WX WY WM WS TMR CTR HR IR OR SR ROR DR K XR
WX0

∣
WX240

WY0
∣

WY240

WM0
∣

WM1896

WS0
∣

WS984

T0
∣

T255

C0
∣

C255

R0
∣

R3839

R3840
∣

R3903

R3904
∣

R3967

R3968
∣

R4167

R5000
∣

R8071

D0
∣

D4095

2
∣

256

V、Z

P0~P9

Ts ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
Td ○ ○ ○ ○ ○ ○ ○ ○* ○* ○ ○
L ○ ○* ○ ○

 When rotation control "EN" = 1 or has a transition from 0 to 1(P instruction), the data from the table of Ts will
be rotated 1 position to the left (when "L/R" = 1)or 1 position to the right (when "L/R" = 0). The results of the
rotation will then be written onto table Td.

X0
TS :

109P.T_ROT

Td : R 0
L : 10

X1
L/R

R 0EN

 In the program at left, Ts and Td is the same table. The
table after rotation will write back to itself. It first perform
one left rotation (let X1 = 1, and X0 go from 0→1), and
then performs one right rotation (let X1 = 0, and X0 go
from 0→1). The results are shown at right in the diagram
below.

Rotate left Rotate right (Rotate left) (Rotate right)
 Ts(Td)

Td(Ts) Td(Ts)
R0 0 0 0 0 (right) R0 9 9 9 9 R0 0 0 0 0
R1 1 1 1 1 R1 0 0 0 0 R1 1 1 1 1
R2 2 2 2 2 R2 1 1 1 1 R2 2 2 2 2
R3 3 3 3 3 R3 2 2 2 2 R3 3 3 3 3

 R4 4 4 4 4 R4 3 3 3 3 R4 4 4 4 4
 R5 5 5 5 5 R5 4 4 4 4 R5 5 5 5 5

R6 6 6 6 6 R6 5 5 5 5 R6 6 6 6 6
R7 7 7 7 7 R7 6 6 6 6 R7 7 7 7 7
R8 8 8 8 8 R8 7 7 7 7 R8 8 8 8 8
R9 9 9 9 9 (left) R9 8 8 8 8 R9 9 9 9 9

Before execution First time Second time

Table Instructions

7-110

FUN110 D P
QUEUE

QUEUE
FUN110 D P

QUEUE

IW : Data pushed into queue, can be a constant
or a register

QU : Starting register of queue

L : Size of queue

Pr : Pointer register

OW : Register accepting data popped out
from queue

QU may combine with V, Z, P0~P9 to serve
indirect address application

Range

Ope-
rand

WX WY WM WS TMR CTR HR IR OR SR ROR DR K XR
WX0

∣
WX240

WY0
∣

WY240

WM0
∣

WM1896

WS0
∣

WS984

T0
∣

T255

C0
∣

C255

R0
∣

R3839

R3840
∣

R3903

R3904
∣

R3967

R3968
∣

R4167

R5000
∣

R8071

D0
∣

D4095

16/32-bit
+/- number

V、Z

P0~P9
IW ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
QU ○ ○ ○ ○ ○ ○ ○ ○ ○* ○ ○
L ○ ○* ○ 2~256
Pr ○ ○ ○ ○ ○ ○ ○ ○* ○* ○

OW ○ ○ ○ ○ ○ ○ ○ ○* ○* ○

 Queue is also a kind of table. It is different from ordinary table in that its queue register numbers go from 1 to L
and not from 0 to L-1. In other words QU1~QUL respectively correspond to pointers Pr = 1 to L, and Pr = 0 is
used to show that the queue is empty.

 Queue is a first in first out (FIFO) device, i.e. - the data that first pushed into the queue will be the first to pop
out from the queue. A queue is comprised of L consecutive 16 or 32 bit registers (D instruction) starting from
the QU register, as in the diagram below:

Pr
4

IW QU
5555 QU1 4444

QU2 3333
 QU3 2222
 QU4 1111

OW

QU5 ××××

～ is the sequence number of
operation QUL

 When execution control "EN" = 1 or has a transition from 0 to 1 (P instruction), the status of in/out control "I/O"
determines whether the IW data will be pushed into the queue (when "I/O" = 1) or be popped out and
transferred to OW (when "I/O" = 0). As shown in the diagram above, the IW data will always be pushed into the
first (QU1) register of the queue. After it has been pushed in, Pr will immediately be increased by 1, so that the
pointer can always point to the first data that was pushed into the queue. When it is popped out, the data
pointed by Pr will be transferred directly to OW. Pr will be reduced by 1, so that it still point to the first data
remained in the queue.

push(I/O=1)
1.IW always push into
QU1
2.Pr＋1→Pr

Push
down

Pop out(I/O=0)
2. QUpr →OW
3. Pr－1→Pr

 …
 …

Table Instructions

7-111

FUN110 D P
QUEUE

QUEUE
FUN110 D P

QUEUE

 If no data has yet been pushed into the queue or the pushed in data has already been popped out (Pr = 0),
then the queue empty flag will be set to 1. In this case, even if there is further popping out action, this
instruction will not be executed. If data is only pushed in and not popped out, or pushed in is more than that
popped out, then the queue finally becomes full (pointer Pr indicates the QUL position), and the queue full flag
is changed to 1. In this case, if there is more pushing in action, this instruction will not execute. The pointer for
this instruction is used during access of the queue, to indicate the data that was pushed in the earliest. Other
programs should not be allowed to change it, or else an operation error will be created. If there is a specific
application, which requires the setting of a Pr value, then its permissible range is 0 to L (0 means empty, and 1
to L respectively correspond to QU1 to QUL). Beyond this range, the pointer error flag "ERR" will be set as 1,
and this instruction will not be carried out.

X0

QU :

110P.QUEUE

Pr :
R 20

L :

OW :

I/O 10
R 2

IW :

R 1
FUL

ERR

EPT

X1

R 0EN

 The program at left assumes the queue content is the
same with the queue at preceding page. It will first
perform queue push operation, and then perform pop
out action. The results are shown below. Under any
circumstance, Pr always point to the first (oldest) data
that was remained in queue.

 Pr Pr
 5 4
 QU QU

QU1 5 5 5 5 R2 QU1 5 5 5 5 R2
QU2 4 4 4 4 R3 QU2 4 4 4 4 R3
QU3 3 3 3 3 R4 QU3 3 3 3 3 R4
QU4 2 2 2 2 R5 OW QU4 2 2 2 2 R5 OW
QU5 1 1 1 1 R6 ×××× R20 QU5 R6 1 1 1 1 R20
QU6 R7 ↑ QU6 R7
QU7 R8 OW unchanged QU7 R8
QU8 R9 QU8 R9
QU9 R10 QU9 R10
QU10 R11 QU10 R11

After push in (X1=1，X0 from 0→1) After pop off (X1=0，X0 from 0→1)

Table Instructions

7-112

FUN111 D P
STACK

STACK
FUN111 D P

STACK

IW : Data pushed into stack, can be a constant
or a register

ST : Starting register of stack
L : Size of stack
Pr : Pointer register
OW : Register accepting data popped out from

stack
ST may combine with V, Z, P0~P9 to serve
indirect address application

Range

Ope-
rand

WX WY WM WS TMR CTR HR IR OR SR ROR DR K XR
WX0

∣
WX240

WY0
∣

WY240

WM0
∣

WM1896

WS0
∣

WS984

T0
∣

T255

C0
∣

C255

R0
∣

R3839

R3840
∣

R3903

R3904
∣

R3967

R3968
∣

R4167

R5000
∣

R8071

D0
∣

D4095

16/32-bit
+/-

number

V、Z

P0~P9
IW ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
ST ○ ○ ○ ○ ○ ○ ○ ○* ○* ○ ○
L ○ ○* ○ 2~256
Pr ○ ○ ○ ○ ○ ○ ○ ○* ○* ○

OW ○ ○ ○ ○ ○ ○ ○ ○* ○* ○

 Like queue, stack is also a kind of table. The nature of its pointer is exactly the same as with queue, i.e. Pr = 1
to L, which corresponds to ST1 to STL, and when Pr = 0 the stack is empty.

 Stack is the opposite of queue, being a last in first out (LIFO) device. This means that the data that was most
recently pushed into the stack will be the first to be popped out of the stack. The stack is comprised of L
consecutive 16 or 32-bit (D instruction) registers starting from ST, as shown in the following diagram:

 Pr

～ is the sequence
number of operation

4

ST
 ST1 1111 ← Bottom of stack
 ST2 2222
 ST3 3333

IW

ST4 4444

OW
5555 ST5 ××××

push

 STL

 When execution control "EN" = 1 or has a transition from 0 to 1(P instruction), the status of in/out control "I/O"
determines whether the IW data will be pushed into the stack (when "I/O" = 1), or the data pointed by Pr within
the stack (the data most recently pushed into the stack) will be moved out and transferred to OW (when "I/O"
= 0). Note that the data pushed in is stacking, so before pushed in, Pr will increased by 1 to point to the top of
the stack then the data will be pushed in. When it is popped out, the data pointed by pointer Pr (the most
recently pushed in data) will be transferred to OW. After then Pr will decreased by 1. Under any circumstances,
the pointer Pr will always point to the data that was pushed into the stack most recently.

push(I/O=1)
1.Pr＋1→Pr
2.IW→STpr

pop(I/O=0)
1.STpr→OW
2.Pr－1→Pr

Table Instructions

7-113

FUN111 D P
STACK

STACK
FUN111 D P

STACK

 When no data has yet been pushed into the stack or the pushed in data has already been popped out (Pr = 0),
the stack empty flag "EPT" will set to 1. In this case any further pop up actions, will be ignored. If more data is
pushed than popped out, sooner or latter the stack will be full (pointer Pr points to STL position), and the stack
full flag "FUL" will set to 1. In this case any further push actions, will be ignored. As with queue, the stack
pointer in normal case should not be changed by other instructions. If there is a special application which
requires to set the Pr value, then its effective range is 0 to L (0 means empty, 1 to L respectively correspond to
ST1 to STL). Beyond this range, the pointer error flag "ERR" will set to 1, and the instruction will not be carried
out.

X0

ST :

111P.STACK

Pr :
R 20

L :

OW :

I/O 10
R 2

IW :

R 1
FUL

ERR

EPT

X1

R 0EN

 The program at left assumes that the initial content of the
stack is just as in the diagram of a stack on the
preceding page. The operation illustrated in this example
is to push a data and than pop it from stack. The results
are shown below. Under any circumstances, Pr always
point to the data that was most recently pushed into the
stack.

 Pr Pr
 5 R1 4
 ST QU

ST1 1 1 1 1 R2 ST1 1 1 1 1 R2
ST2 2 2 2 2 R3 ST2 2 2 2 2 R3
ST3 3 3 3 3 R4 ST3 3 3 3 3 R4
ST4 4 4 4 4 R5 OW ST4 4 4 4 4 R5 OW
ST5 5 5 5 5 R6 ×××× R20 ST5 R6 5 5 5 5 R20
ST6 R7 ↑ ST6 R7
ST7 R8 OW unchanged ST7 R8
ST8 R9 ST8 R9
ST9 R10 ST9 R10
ST10 R11 ST10 R11

After push(X1=1，X0 from 0→1) After pop up(X1=0，X0 from 0→1)

Table Instructions

7-114

FUN112 D P
BKCMP

BLOCK COMPARE（DRUM）
FUN112 D P

BKCMP

Rs : Data for compare, can be a constant or a
register

Ts : Starting register block storing upper and
lower limit

L : Number of pairs of upper and lower limits

D : Starting relay storing results of
comparison

Range

Ope-
rand

Y M S WX WY WM WS TMR CTR HR IR OR SR ROR DR K
Y0
∣

Y255

M0
∣

M999

S0
∣

S999

WX0
∣

WX240

WY0
∣

WY240

WM0
∣

WM1896

WS0
∣

WS984

T0
∣

T255

C0
∣

C255

R0
∣

R3839

R3840
∣

R3903

R3904
∣

R3967

R3968
∣

R4167

R5000
∣

R8071

D0
∣

D4095

16/32-bit
+/-

number

Rs ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
Ts ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
L ○ ○* ○ 1~256
D ○ ○ ○

 When comparison control "EN" = 1 or has a transition from 0 to 1(P instruction), comparisons will be perform
one by one between the contents of Rs and the upper and lower limits form by L pairs of 16 or 32-bit (D
modifier) registers starting from the Ts register (starting from T0 each adjoining 2 register units form a pair of
upper and lower limits). If the value of Rs falls within the range of the pair, then the bit within the comparison
results relay D which corresponds to that pair will be set to 1. Otherwise it will be set as 0 until comparison of
all the L pairs of upper and lower limits is completed.

 When M1975=0, if there is any pair where the upper limit value is less than the lower limit value, then the limit
error flag "ERR" will be set to 1, and the comparison output for that pair will be 0.

 When M1975=1, there is no restriction on the relation of upper limit and lower limit, this can apply for 360°rotary
electronic drum switch application.

 Upper limit Lower limit Compare

Compared
value

Result

0 TS1 TS0 D0

Rs
1 TS3 TS2 D1

L−1 TS2L−1 TS2L−2 DL−1

 Actually this instruction is a drum switch, which can be used in interrupt program and when incorporate with
immediate I/O instruction (IMDIO) can achieve an accurate electronic drum.

X0
EN RS :

Ts :

Y 5

112.BKCMP

D :

C 0

L : 4

ERR

X1
C 0

PV : 360C0
CLR

R 10

PSU

 In this program, C0 represents the rotation angle (Rs) of
a drum shaft. The block compare instruction performs a
comparison between Rs and the 4 pairs (L = 4) of upper
and lower limits, R10,R11, R12,R13, R14,R15 and
R16,R17. The comparison results can be obtained from
the four drum output points Y5 to Y8.

 The input point X1 is a rotation angle detector mounted
on the drum shaft. With each one degree rotation of the
drum shaft angle, X1 produces a pulse. When the drum
shaft rotates a full cycle, X1 produces 360 pulses.

Table Instructions

7-115

FUN112 D P
BKCMP

BLOCK COMPARE（DRUM）
FUN112 D P

BKCMP

 The program in the diagram above coordinates a rotary encoder or other rotating angle detection device
(directly connect to a rotating mechanism), which can form a mechanical device equivalent to the mechanical
structure of an actual drum (see mechanism shown within dotted line in diagram below). While the upper and
lower limits are being adjusted, you can change at will the range of the activated angle of the drum. This
cannot be done with the traditional drum mechanism.

Equivalent mechanical drum emulated by above program

X1

8090

40

Limit sw

320

0

Y5

140

180

220

180

Y6

60

Y7

200

80

Y8

Rotary encoder

Rotating
． mechanism

Y5

Y6

Y7

Y8

C0

40 140

80 180

60

80 200

0° 40° 80° 120° 160° 200° 240° 280° 320° 360°

X1
Y5 Y6 Y7 Y8

Rotary encoder
Rotating

mechanism

Limit sw

320

220

40

180
140

180

8090

0

60

80

200

0

Table Instructions

7-116

FUN113 D P
SORT

DATA SORTING
FUN113 D P

SORT

S : Starting register of source registers to sort
D : Starting register of destination registers to store the

data after sorted
L : Total register for sorting

Range

Ope-
rand

TMR CTR HR IR OR SR ROR DR K
T0
∣

T255

C0
∣

C255

R0
∣

R3839

R3840
∣

R3903

R3904
∣

R3967

R3968
∣

R4167

R5000
∣

R8071

D0
∣

D4095

2
∣

127

S ○ ○ ○ ○ ○ ○ ○ ○
D ○ ○* ○
L ○ ○ ○ ○

● When sort control "EN" = 1 or has a transition from 0 to 1(P instruction), will sort the registers with ascending
order (if A/D = 1) or descending order (if A/D = 0) and put the sorted result to the registers starting by D
register.

● The valid data length of sort operation is between 2 and 127, other length will set the “ERR” to 1 and the sort
operation will not perform.

X0

R 10

L : 10A/D

R 0S :

D :

ERREN

113P.SORT

․The example at left sorts the table comprised of R0~R9
and stores the sorted data to the table locate at
R10~R19.

 S D
R0 1 5 4 7

X0＝

R10 0 0 1 3
R1 2 3 1 4 R11 1 5 4 7
R2 7 7 2 5 R12 1 9 2 5
R3 0 0 1 3 R13 2 3 1 4
R4 5 2 4 7 R14 2 7 9 6
R5 1 9 2 5 R15 5 2 4 7
R6 6 7 4 4 R16 5 3 1 9
R7 5 3 1 9 R17 6 7 4 4
R8 9 7 8 8 R18 7 7 2 5
R9 2 7 9 6 R19 9 7 8 8

Before After

Table Instructions

7-117

FUN114 D P
Z-WR

ZONE WRITE
FUN114 D P

Z-WR

D : Starting address of being set or reset

N : Quantity of being set oe reset, 1~511

D 、 N operand can combine V 、 Z 、 P0~P9 for index

addressing while word operation

 Range

Operand

Y M S WY WM WS TMR CTR HR IR OR SR ROR DR K XR
Y0
∣

Y255

M0
∣

M1911

S0
∣

S99

WY0
∣

WY240

WM0
∣

WM1896

WS0
∣

WS984

T0
∣

T255

C0
∣

C255

R0
∣

R3839

R3840
∣

R3903

R3904
∣

R3967

R3968
∣

R4167

R5000
∣

R8071

D0
∣

D4095

V、Z

P0～P9
D ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
N ○ ○ ○ 1-511 ○

● When operation control "EN"=1 or changes from 0→1（ P instruction）, it will perform the write operation
according to the input status of write selection, the specified area of registers or bits will all be reset to 0
("1/0"=0) or set to 1("1/0"=1).

X0
EN

114.Z-WR

R0

N : 10I/O

D : ERR

․Above example, registers R0~R9 will be reset to 0 while X0=1.

X0
EN

114.Z-WR

M5

N : 7I/O

D : ERR

․Above example, bits M5~M11 will be reset to 0 while X0=1.

Matrix Instructions

7-118

Matrix Instructions

Fun No. Mnemonic Functionality Fun No. Mnemonic Functionality

120 MAND Matrix AND 126 MBRD Matrix Bit Read

121 MOR Matrix OR 127 MBWR Matrix Bit Write

122 MXOR Matrix XOR 128 MBSHF Matrix Bit Shift

123 MXNR Matrix XNOR 129 MBROT Matrix Bit Rotate

124 MINV Matrix Inverse 130 MBCNT Matrix Bit Count

125 MCMP Matrix Compare

● A matrix is comprised of 2 or more consecutive 16-bit registers. The number of registers comprising the
matrix is called the matrix length (L). One matrix altogether has L×16 bits (points), and the basic unit of the
object for each operation is bit.

● The matrix instructions treats the 16×L matrix bits as a set of series points(denoted by M0 to M16L-1).
Whether the matrix is formed by register or not, the operation object is the bit not numerical value.

● Matrix instructions are used mostly for discrete status processing such as moving, copying, comparing,
searching, etc, of single point to multipoint (matrix), or multipoint-to-multipoint. These instructions are
convenient, important for application.

● Among the matrix instructions, most instruction need to use a 16-bit register as a pointer to points a specific
point within the matrix. This register is known as the matrix pointer (Pr). Its effective range is 0 to 16L-1,
which corresponds respectively to the bits M0 to M16L-1 within the matrix.

● Among the matrix operations, there are shift left/right, rotate left/right operations. We define the movement
toward higher bit is left direction, while the movement toward lower bit is right direction, as shown in the
diagram below.

←─ Width is 16 bit ─→

(right) M15

↓
M M0

↓
R0

↑
│
│

length
L

│
│
↓

R1
R2 1
R3
R4

RL−1

 ↑
 M16L−1(left)

Pr=40, po in t
to M 4 0 ,

Pr
40

M 4 0

Matrix Instructions

7 -119

FUN120 P
MAND

MATRIX AND
FUN120 P

MAND

Ma : Starting register of source matrix a

Mb : Starting register of source matrix b

Md : Starting register of destination matrix

L : Length of matrix (Ma, Mb and Md)

Ma, Mb, Md may combine with V, Z, P0~P9 to serve
indirect address application

Range

Ope-
rand

WX WY WM WS TMR CTR HR IR OR SR ROR DR K XR
WX0
∣

WX240

WY0
∣

WY240

WM0
∣

WM1896

WS0
∣

WS984

T0
∣

T255

C0
∣

C255

R0
∣

R3839

R3840
∣

R3903

R3904
∣

R3967

R3968
∣

R4167

R5000
∣

R8071

D0
∣

D4095

2
∣

256

V、Z

P0~P9

Ma ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
Mb ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
Md ○ ○ ○ ○ ○ ○ ○ ○* ○* ○ ○
L ○ ○* ○ ○

 When operation control "EN" = 1 or has a transition from 0 to 1(P
instruction), this instruction will perform a logic AND (only if 2 bits
are 1 will the result be 1, otherwise it will be 0)operation between
two source matrixes with a length of L, Ma and Mb. The result will
then be stored in the destination matrix Md, which is also the same
length (the AND operation is done by bits with the same bit
numbers). For example, if Ma0 = 0, Mb0 = 1, then Md0 = 0; if Ma1 =
1, Mb1 = 1, then Md1 = 1; etc, right up until AND reaches Ma16L-1
and Mb16L-1.

Ma Mb

AND

Md

L

X0
Ma :

120P.MAND

Mb :
R 20

L : 5

R 10
R 0

Md :

EN

 In the program at left, when X0 goes from 0→1, then
matrix Ma, comprised by R0 to R4, and matrix Mb,
comprised by R10 to R14, will do an AND operation. The
results will be stored back in matrix Md, comprised by
R20 to R24. The result is shown at right in the diagram
below.

Ma15
↓ Ma Ma0

↓
Mb15
↓ Mb Mb0

↓
Md15
↓ Md Md0

↓
R0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 R10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 R20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
R1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 R11 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 R21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
R2 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 R12 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 R22 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
R3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 R13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 R23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
R4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 R14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 R24 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

↑
Ma79

↑

Ma64
↑
Mb79

↑

Mb64
↑
Md79

↑

Md64

Before execution After execution

Matrix Instructions

7 -120

FUN121 P
MOR

MATRIX OR
FUN121 P

MOR

Ma :ENOperation control

Ladder symbol
121P.MOR

Mb :

L :

Md :

Ma : Starting register of source matrix a

Mb : Starting register of source matrix b

Md : Starting register of destination matrix

L : Length of matrix (Ma, Mb and Md)

Ma, Mb, Md may combine with V, Z, P0~P9 to serve
indirect address application

Range

Ope-
rand

WX WY WM WS TMR CTR HR IR OR SR ROR DR K XR
WX0
∣

WX240

WY0
∣

WY240

WM0
∣

WM1896

WS0
∣

WS984

T0
∣

T255

C0
∣

C255

R0
∣

R3839

R3840
∣

R3903

R3904
∣

R3967

R3968
∣

R4167

R5000
∣

R8071

D0
∣

D4095

2
∣

256

V、Z

P0~P9

Ma ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
Mb ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
Md ○ ○ ○ ○ ○ ○ ○ ○* ○* ○ ○
L ○ ○* ○ ○

 When operation control "EN" = 1 or has a transition from 0 to 1 (P
instruction), this instruction will perform a logic OR(If any 2 of the
bits are 1, then the result will be 1, and only if both are 0 will the
result be 0) operation between 2 source matrixes with a length of
L, Ma and Mb. The result will then be stored in the destination
matrix Md, which is also the same length (the OR operation is
done by bits with the same bit numbers). For example, if Ma0 = 0,
Mb0 = 1, then Md0 = 1; if Ma1 = 0, Mb1 = 0, then Md1 = 0; etc, right
up until OR reaches Ma16L-1 and Mb16L-1.

L

Ma Mb Md

OR

X0
Ma :

121P.MOR

Mb :
R 10

L : 5

R 10
R 0

Md :

EN

 In the program at left, when X0 goes from 0→1, then matrix
Ma, comprised by R0 to R4, and matrix Mb, comprised by
R10 to R14, will do an OR operation. The results will then
be stored into the destination matrix Md, comprised by R10
to R14. In this example, Mb and Md is the same matrix, so
after operation the source matrix Mb will replaced by the
new value. The result is shown at right in the diagram
below.

Ma15
↓ Ma Ma0

↓
Mb15
↓ Mb Mb0

↓
Md15
↓ Md Md0

↓
R0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 R10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 R20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
R1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 R11 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 R21 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
R2 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 R12 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 R22 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
R3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 R13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 R23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
R4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 R14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 R24 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

↑

Ma79
↑

Ma64

↑

Mb79

↑

Mb64

↑

Md79

↑

Md64

Before execution After execution

Matrix Instructions

7 -121

FUN122 P
MXOR

MATRIX EXCLUSIVE OR（XOR）
FUN122 P

MXOR

Ma : Starting register of source matrix a

Mb : Starting register of source matrix b

Md : Starting register of destination matrix

L : Length of matrix (Ma, Mb and Md)

Ma, Mb, Md may combine with V, Z, P0~P9 to serve
indirect address application

Range

Ope-
rand

WX WY WM WS TMR CTR HR IR OR SR ROR DR K XR
WX0
∣

WX240

WY0
∣

WY240

WM0
∣

WM1896

WS0
∣

WS984

T0
∣

T255

C0
∣

C255

R0
∣

R3839

R3840
∣

R3903

R3904
∣

R3967

R3968
∣

R4167

R5000
∣

R8071

D0
∣

D4095

2
∣

256

V、Z

P0~P9

Ma ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
Mb ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
Md ○ ○ ○ ○ ○ ○ ○ ○* ○* ○ ○
L ○ ○* ○ ○

 When operation control "EN" = 1 or has a transition from 0 to 1 (P
instruction), this instruction will performs a logic XOR (if the 2 bits
are different, then the result will be 1, otherwise it will be
0)between 2 source matrixes with a length of L, Ma and Mb. The
result will then be stored back into the destination matrix Md, which
also has a length of L. For example the XOR operation is done by
bits with the same bit numbers - for example, if Ma0 = 0, Mb0 = 1,
then Md0 = 1; if Ma1 = 1, Mb1 = 1, then Md1 = 0; etc, right up until
XOR reaches Ma16L-1 and Mb16L-1.

L

Ma Mb Md

XOR

X0
Ma :

122P.MXOR

Mb :
R 20

L : 5

R 10
R 0

Md :

EN

 In the program at left, when X0 goes from 0→1, will
perform a XOR operation between matrix Ma, comprised
by R0 to R4, and matrix Mb, comprised by R10 to R14.
The results will then be stored in destination matrix Md,
comprised by R20 to R24. The results are shown at right
in the diagram below.

Ma15
↓ Ma Ma0

↓
Mb15
↓ Mb Mb0

↓
Md15
↓ Md Md0

↓
R0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 R10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 R20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
R1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 R11 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 R21 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
R2 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 R12 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 R22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
R3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 R13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 R23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
R4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 R14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 R24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

↑

Ma79
↑

Ma64

↑

Mb79

↑

Mb64

↑

Md79

↑

Md64

Before execution After execution

Matrix Instructions

7 -122

FUN123 P
MXNR

MATRIX EXCLUSIVE NOR（XNR）
FUN123 P

MXNR

Ma : Starting register of source matrix a
Mb : Starting register of source matrix b
Md : Starting register of destination matrix

L : Length of matrix (Ma, Mb and Md)

Ma, Mb, Md may combine with V, Z,P0~P9 to serve
indirect address application

Range

Ope-
rand

WX WY WM WS TMR CTR HR IR OR SR ROR DR K XR
WX0
∣

WX240

WY0
∣

WY240

WM0
∣

WM1896

WS0
∣

WS984

T0
∣

T255

C0
∣

C255

R0
∣

R3839

R3840
∣

R3903

R3904
∣

R3967

R3968
∣

R4167

R5000
∣

R8071

D0
∣

D4095

2
∣

256

V、Z

P0~P9
Ma ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
Mb ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
Md ○ ○ ○ ○ ○ ○ ○ ○* ○* ○ ○
L ○ ○* ○ ○

 When operation control "EN" = 1 or has a transition from 0 to 1 (P
instruction), will perform a logic XNR operation (if the 2 bits are the
same, then the result will be 1, otherwise it will be 0)between 2
source matrixes with a length of L, Ma and Mb. The results will
then be stored into the destination matrix Md, which also has the
same length (the XNR operation is done by bits with the same bit
numbers). For example, if Ma0 = 0, Mb0 = 1, then Md0 = 0; Ma1 = 0,
Mb1 = 0, then Md1 = 1; etc, right up until XNR reaches Ma16L-1 and
Mb16L-1.

L

Ma Mb Md

XNR

X0
Ma :

123P.MXNR

Mb :
R 10

L : 5

R 10
R 0

Md :

EN

 When operation control "EN" = 1 or goes from 0 to 1 (P
instruction), will perform a XNR operation between Ma
matrix comprised by R0~R9 and Mb matrix comprised by
R10~R19. The results will then be stored into the
destination matrix Md comprised by R10~R19. The results
are shown at right in the diagram below.

Ma15
↓ Ma Ma0

↓
Mb15
↓ Mb Mb0

↓
Md15
↓ Md Md0

↓
R0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 R10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 R20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
R1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 R11 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 R21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
R2 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 R12 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 R22 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
R3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 R13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 R23 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
R4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 R14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 R24 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

↑

Ma79
↑

Ma64

↑

Mb79

↑

Mb64

↑

Md79

↑

Md64

Before execution After execution

Matrix Instructions

7 -123

FUN124 P
MINV

MATRIX INVERSE
FUN124 P

MINV

Ms :ENOperation control

Ladder symbol

124P.MINV

L :
Md :

Ms : Starting register of source matrix

Md : Starting register of destination

L : Length of matrix (Ms and Md)

Ma, Md may combine with V, Z, P0~P9 to serve indirect
address application

Range

Ope-
rand

WX WY WM WS TMR CTR HR IR OR SR ROR DR K XR
WX0
∣

WX240

WY0
∣

WY240

WM0
∣

WM1896

WS0
∣

WS984

T0
∣

T255

C0
∣

C255

R0
∣

R3839

R3840
∣

R3903

R3904
∣

R3967

R3968
∣

R4167

R5000
∣

R8071

D0
∣

D4095

2
∣

256

V、Z

P0~P9

Ms ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
Md ○ ○ ○ ○ ○ ○ ○ ○* ○* ○ ○
L ○ ○* ○ ○

 When operation control "EN" = 1 or has a transition from 0 to 1 (P
instruction), source register Ms, which has a length of L, will be
completely inverted (all the bits with a value of 1 will change to 0,
and all those with a value of 0 will change to 1). The results will
then be stored into destination matrix Md. L

MdMs

Ms
Inverse

X0
Ms :

124P.MINV

L : 5

R 0
Md : R 0

EN

 In the program at left, when X0 goes from 0→1, the
matrix comprised by R0 to R4 will be inverted, and then
store back into itself (because in this example Ms and
Md are the same matrix). The results obtained are
shown at right in the diagram below.

Ms15
↓ Ms

Ms0
↓

Md15
↓ Md

Md0
↓

R0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 R0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
R1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 R1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
R2 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 R2 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
R3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 R3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
R4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 R4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

↑
Ms79

↑

Ms64

↑

Md79
↑

Md64

Before execution After execution

Matrix Instructions

7-124

FUN125 P
MCMP

MATRIX COMPARE
FUN125 P

MCMP

Ma :ENComparison control

Ladder symbol

125P.MCMP
FND Found objective

END Compare to endCompare from head FHD

Different/Same option D/S

L :
Pr :

ERR Pointer error

Mb :

Md : Starting register of matrix a
Mb : Starting register of matrix b
L : Length of matrix (Ma, Mb)
Pr : Pointer register
Ma, Mb may combine with V, Z, P0~P9 to
serve indirect address application

Range

Ope-
rand

WX WY WM WS TMR CTR HR IR OR SR ROR DR K XR
WX0
∣

WX240

WY0
∣

WY240

WM0
∣

WM1896

WS0
∣

WS984

T0
∣

T255

C0
∣

C255

R0
∣

R3839

R3840
∣

R3903

R3904
∣

R3967

R3968
∣

R4167

R5000
∣

R8071

D0
∣

D4095

2
∣

256

V、Z

P0~P9

Ma ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
Mb ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
L ○ ○* ○ ○
Pr ○ ○ ○ ○ ○ ○ ○ ○* ○* ○

 When comparison control "EN" = 1 or has a transition from 0 to 1 (P
instruction), then beginning from the top pair of bits (Ma0 and Mb0)
within the 2 matrixes Ma and Mb (when "FHD" = 1 or Pr value is
equal to 16L-1), or beginning from the next pair of bits (Mapr + 1 and
Mbpr + 1) pointed by pointer Pr (when "FHD" = 0 and Pr value is less
than L-1), this instruction will compare and search for pairs of bits
with different value (when D/S = 1) or the same value (when D/S = 0).
Once match found, pointer Pr will point to the bit number in the matrix
met the search condition. The found objective flag "FND" will be set
to 1. When it has searched to the final pair of bits in the matrix
(Ma16L-1, Mb16L-1), this execution of the instruction will finish, no matter
it has found or not. If this happen then The compare-to-end flag
"END" will be set as 1, and the Pr value will set to 16L-1 and the next
time that this instruction is executed, Pr will automatically return to
the starting point of the matrix (Pr = 0) to begin the comparison
search.

L

Ma Mb

Mapr : Mbpr

Pr

 The range for the pointer value is 0 to 16L-1. The Pr value should not be changed by other instructions, as this will
affect the result of search. If the Pr value exceeds its range, then the pointer error flag "ERR" will be set to 1, and
this instruction will not be carried out.

X0 125P.MCMP

ENDL :
Pr :

FHD

D/S ERR

5
R 20

FNDMa :
Mb : R 10

R 0EN

 In the program at left, the "FHD" input is 0, so starting from a
position 1 greater than the pointer value at that time (marked
by *), the instruction will do a search for bits with different
status (because D/S = 1). When X0 has a transition from 0→
1 three times, the results are shown at right in the diagram
below.

Pr
4 R20

Ma15
↓ Ma * Ma0

↓
 Mb15
↓ Mb * Mb0

↓
R0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 R10 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1
R1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 R11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
R2 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 R12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
R3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 R13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
R4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 R14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

↑
Ma79

↑

Ma64
↑
Mb79

↑

Mb64

Before execution

Pr FND END
R2 0 39 1 0

Pr FND END
R2 0 79 0 1

Pr FND END
R2 0 2 1 0

Execution result

Matrix Instructions

7 -125

FUN126 P
MBRD

MATRIX BIT READ
FUN126 P

MBRD

Ms : Starting register of matrix

L : Matrix length

Pr : Pointer register

Ms may combine with V, Z, P0~P9 to serve
indirect address application

Range

Ope-
rand

WX WY WM WS TMR CTR HR IR OR SR ROR DR K XR
WX0
∣

WX240

WY0
∣

WY240

WM0
∣

WM1896

WS0
∣

WS984

T0
∣

T255

C0
∣

C199

R0
∣

R3839

R3840
∣

R3903

R3904
∣

R3967

R3968
∣

R4167

R5000
∣

R8071

D0
∣

D4095

2
∣

256

V、Z

P0~P9

Ms ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
L ○ ○* ○ ○
Pr ○ ○ ○ ○ ○ ○ ○ ○* ○* ○

 When readout control "EN" = 1 or has a transition from 0 to 1
(P instruction), the status of the bit Mspr pointed by pointer Pr
within matrix Ms will be read out and appear at the output bit
"OTB". Before the readout, this instruction will first check the
input -pointer clear "CLR". If "CLR" is 1, then the Pr value will be
cleared to 0 first before the readout action is carried out. After
the readout is completed, If the Pr value has already reached
16L-1 (the final bit), then the read-to-end flag "END" will be set
to 1. If Pr is less than 16L-1, then the status of pointer increment
"INC" will be checked. If "INC" is 1, then Pr will be increased by
1. Besides this, pointer clear "CLR" can execute independently,
and is not affected by other input.

L

Pr

Mspr

Ms

OTB

 The effective range of the pointer is 0 to 16L-1. Beyond this range the pointer error flag "ERR" will be set to 1,
and this instruction will not be carried out.

X0 126P.MBRD

END
L :
Pr :INC

CLR ERR

5
R 20

OTBMs : R 0EN

 In the program at left, INC = 1, so every time there is
one readout the pointer will be increased by 1. With this
way each bit in Ms may be read out successively, as
shown at left in the diagram below. When X0 goes 3
times from 0→1, the results are shown at right in the
diagram below .

Ms15
↓ Ms Ms0

↓

Pr
R20 77

R0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1
R1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 OTB
R2 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 0
R3 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
R4 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

↑ ↑
Ms79 Ms77

↑

Ms64

Before execution

P r OTB END

R2 0 78 1 0

Pr OTB END

R2 0 79 0 0

Pr OTB END

R2 0 79 1 1

Execution result

Matrix Instructions

7-126

FUN127 P
MBWR

MATRIX BIT WRITE
FUN127 P

MBWR

Md : Starting register of matrix

L : Matrix length

Pr : Pointer register

Md may combine with V, Z, P0~P9 to serve
indirect address application

Range

Ope-
rand

WY WM WS TMR CTR HR OR SR ROR DR K XR
WY0
∣

WY240

WM0
∣

WM1896

WS0
∣

WS984

T0
∣

T255

C0
∣

C255

R0
∣

R3839

R3904
∣

R3967

R3968
∣

R4167

R5000
∣

R8071

D0
∣

D4095

2
∣

256

V、Z

P0~P9

Md ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
L ○ ○* ○ ○
Pr ○ ○ ○ ○ ○ ○ ○ ○* ○* ○

 When write control "EN" = 1 or has a transition from 0 to 1 (P
instruction), the status of the write-in bit "INB" will be written into
the bit Mdpr pointed by pointer Pr within matrix Md. Before the
write-in takes place, the status of pointer clear "CLR" will be
checked. If "CLR" is 1, then Pr will be cleared to 0 before the
write-in action. After the write-in action has been completed, the
Pr value will be checked again. If the Pr value has already
reached 16L-1 (last bit), then the write-to-end flag will be set to
1. If the Pr value is less than 16L-1 and "INC" is 1, then the
pointer will increased by 1. Besides this, pointer clear "CLR" can
execute independently, and is not affected by other input.

L

Pr

Mspr

Ms

OTB

 The effective range of Pr is 0 to 16L-1. Beyond this range, the pointer error flag "ERR" will be set to 1, and
this instruction will not be carried out.

X0 127P.MBWR

END
L :
Pr :INB ERR

5
R 20

Md : R 0

INC

CLR

X1
EN

 In the program at left, pointer will be increased each time
execution (because "INC" is 1). As shown in the diagram
below, when X0 has a transition from 0→1, the status of
INB (X1) will be written into the Mdpr (Md78) position, and
pointer Pr will increased by 1 (changing to 79). In this
case, although Pr is pointing to the end, it has not yet
been written into Md79, so "END" flag is still 0. Only the
next attempt to write to Md79 will set “END” to 1.

 X1 Pr

X0=

Pr END

 1 R20 78 R20 79 0

Md15
↓ Md Md0

↓
Md15
↓ Md Md0

↓
R0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 R0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
R1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 R1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
R2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 R2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
R3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 R3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
R4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 R4 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

↑
Md79 ↑

Md64

↑

Md79
↑

Md64

Before execution After execution

Matrix Instructions

7 -127

FUN128 P
MBSHF

MATRIX BIT SHIFT
FUN128 P

MBSHF

Ms : Starting register of source matrix

Md : Starting register of destination
matrix

L : Length of matrix (Ms and Md)

Ms, Md may combine with V, Z, P0~P9
to serve indirect address application

Range

Ope-
rand

WX WY WM WS TMR CTR HR IR OR SR ROR DR K XR
WX0
∣

WX240

WY0
∣

WY240

WM0
∣

WM1896

WS0
∣

WS984

T0
∣

T255

C0
∣

C255

R0
∣

R3839

R3840
∣

R3903

R3904
∣

R3967

R3968
∣

R4167

R5000
∣

R8071

D0
∣

D4095

2
∣

256

V、Z

P0~P9
Ms ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
Md ○ ○ ○ ○ ○ ○ ○ ○* ○* ○ ○
L ○* ○ ○

 When shift control "EN" = 1 or has a transition from 0 to 1
(P instruction), source matrix Ms will be retrieved and
completely shifted one position to the left (when L/R = 1) or
one position to the right (when L/R = 0). The space caused
by the shift (with a left shift it will be M0, and with a right
shift it will be M16L-1), is replaced by the status of fill-in bit
"INB". The status of the bits popped out (with a left shift it
will be M16L-1, and with a right shift it will be M0) will appear
at the output bit "OTB". Then the results of this shifted
matrix will be filled into the destination matrix Md.

 The program at left is an example where Ms and Md are
the same matrix. When X0 goes from 0→1, Ms will be
completely retrieved and moved to the left (because L/R =
1) by 1 bit. It will then be stored back to Md, and the results
are shown at right in the diagram below.

X0 128P.MBSHF

L :
Md :

INB

L/R

5

OTBMs : R 0
R 0X0

EN

Ms

Shift
left

1 bitOTB

INB
Md

L

L

Ms Md
OTB

INB

Shift
right
1 bit

Ms15
↓ Ms Ms0

↓

X0=

Md15
↓ Md

Md0
↓

R0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 R0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
R1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 R1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
R2 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 R2 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1
R3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 R3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
R4 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 R4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

↑
Ms79 ↑

Ms64

↑

Md79
↑

Md64

Before execution After execution

Matrix Instructions

7-128

FUN129 P
MBROT

MATRIX BIT ROTATE
FUN129 P

MBROT

Ms : Starting register of source matrix

Md : Starting register of destination matrix

L : Length of matrix (Ms and Md)

Ms, Md may combine with V, Z, P0~P9 to
serve indirect address application

Range

Ope-
rand

WX WY WM WS TMR CTR HR IR OR SR ROR DR K XR
WX0
∣

WX240

WY0
∣

WY240

WM0
∣

WM1896

WS0
∣

WS984

T0
∣

T255

C0
∣

C255

R0
∣

R3839

R3840
∣

R3903

R3904
∣

R3967

R3968
∣

R4167

R5000
∣

R8071

D0
∣

D4095

2
∣

256

V、Z

P0~P9
Ms ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
Md ○ ○ ○ ○ ○ ○ ○ ○* ○* ○ ○
L ○* ○ ○

 When rotate control "EN" = 1 or has a transition from 0
to 1 (P instruction), matrix Ms will be completely
retrieved and rotated by one bit towards the left (when
L/R = 1) or to the right (when L/R = 0). The space
created by the rotation (with a left rotation it will be M0,
and with a right rotation it will be M16L-1) will be
replaced by the status of the rotated-out bit (with a left
rotation it will be M16L-1, and with a right rotation it will
be M0). The rotated-out bit will not only be used to fill
the above-mentioned space, it will also be transferred
to rotated-out bit "OTB".

 In the program at left, Ms and Md are the same
matrix. When X0 goes from 0→1, then the whole of Ms
is retrieved and rotated right (because L/R = 0) by 1
bit. It is then stored back into Ms itself (because in this
example Ms and Md are the same matrix). The results
are shown at right in the diagram below.

L

Ms Md

Rotate
left

1 bitOTB

L/R=1

L

Ms Md

Shift
right
1 bit

OTBL/R=0

Ms15
↓ Ms Ms0

↓

X0=

Md15
↓ Md

Md0
↓

R0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 R0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
R1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 R1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
R2 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 R2 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0
R3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 R3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
R4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 R4 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

↑
Ms79 ↑

Ms64

↑

Md79
↑

Md64

Before execution After execution

OTB

 0

X0
EN

129P.MBROT

L :
Md :

L/R 5

OTBMs : R 0
R 0

Matrix Instructions

7 -129

FUN130 P
MBCNT

MATRIX BIT STATUS COUNT
FUN130 P

MBCNT

Ms : Starting register of matrix

L : Matrix length

D : Register storing count results

Ms may combine with V, Z, P0~P9 to serve
indirect address application

Range

Ope-
rand

WX WY WM WS TMR CTR HR IR OR SR ROR DR K XR
WX0
∣

WX240

WY0
∣

WY240

WM0
∣

WM1896

WS0
∣

WS984

T0
∣

T255

C0
∣

C255

R0
∣

R3839

R3840
∣

R3903

R3904
∣

R3967

R3968
∣

R4167

R5000
∣

R8071

D0
∣

D4095

2
∣

256

V、Z

P0~P9

Ms ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
L ○ ○* ○ ○
D ○ ○ ○ ○ ○ ○ ○ ○* ○* ○

 When count control "EN" = 1 or has a transition from 0 to 1(P instruction), then among the 16L bits of the
Ms matrix, this instruction will count the total amount of bits with a status of 1 (when input "1/0" = 1) or the
total amount of bits with a status of 0 (when input "1/0" = 0). The results of the counting will be stored into
the register specified by D. If the value of these amounts is 0, then the Result-is-0 flag "D = 0" will be set to
1.

X0 130P.MBCNT

D :1/0

D=0Ms : R 0

X1 L : 5
R 0

EN

 The program at left sets X1 first as 0 (to count bits with
status of 0) and then as 1 (to count bits with status of 1)
and let the signal X0 has a transition from 0→1 for both
case, the execution results are shown at right in the
diagram below .

Ms15
↓ Ms Ms0

↓

X0=

D D
R0
0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 R20 64 R20 16 R1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
R2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
R3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

X1=0 X1=1 R4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

↑
Ms79

↑
Ms64

Source matrix Count of ‘0’ bit Count of ‘1’ bit

I/O Instructions II

7 -130

FUN 139
HSPWM

HIGH SPEED PULSE WIDTH MODULATION OUTPUT
FUN 139
HSPWM

PW : PWM output (0 = Y0、1 = Y2、2 = Y4、3 = Y6)

Op : Output polarity ; 0 = Normal
 1 = Inverse of output
RS : Resolution ; 0 = 1/100 (1%)
 1 = 1/1000 (0.1%)

Pn : Setting of output frequency(0~255)
OR : Setting register of output pulse width (0~100 or

0~1000)
WR : Working register

 Range

Operand

Y WX WY WM WS TMR CTR HR IR OR SR ROR DR K
Yn of
main
unit

WX0
∣

WX240

WY0
∣

WY240

WM0
∣

WM1896

WS0
∣

WS984

T0
∣

T255

C0
∣

C255

R0
∣

R3839

R3840
∣

R3903

R3904
∣

R3967

R3968
∣

R4167

R5000
∣

R8071

D0
∣

D4095

Pw ○ 0～3
Op 0～1
Rs 0～1
Pn ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 0～255
OR ○ ○ ○ 0～1000
WR ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

Description

 The setting of resolution(RS) must be same between output0(Y0) and output1(Y2) also the setting of output
frequency(Pn). It means both output0 and output1 have the same output frequency and the same output
resolution, only the pulse width can be different. Same principle for output2(Y4) and output3(Y6).

 When operation control “EN” = 1, the specified digital output will perform the PWM output, the expression for
output frequency as shown bellow:

1.
)1+P(

184320
=f

n
pwm while Rs(Resolution)=1/100

2.
)1+P(

18432
=f

n
pwm while Rs(Resolution)=1/1000

Example 1 : If Pn (Setting of output frequency) = 50, Rs = 0(1/100), then

)1+50(
184320

=fpwm =3614.117‧‧‧ ≒3.6KHz

 T(Period)=
pwmf
1

 ≒277uS

For Rs = 1/100, if OR(Setting of output pulse width) = 1, then T0 2.7≒ uS; if OR(Setting of output pulse width)
= 50, then To ≒ 140uS.

.Output waveform :

(1).Pn (Output frequency) = 50, Rs = 0 (1/100), OR (Output pulse width) = 1 :

I/O Instructions II

7 -131

FUN 139
HSPWM

HIGH SPEED PULSE WIDTH MODULATION OUTPUT
FUN 139
HSPWM

Tp ≒ 277usec

To ≒ 2.7usec

(2).Pn (Output frequency) = 50, Rs = 0 (1/100), OR (Output pulse width) = 50 :

Example 2 : If Pn (Setting of output frequency) = 200, Rs = 1(1/1000), then

)1+200(
18432

=fpwm 91.7Hz≒

T (Per iod)=
pwmf
1

 10.9mS≒

For Rs = 1/1000, if OR(Setting of output pulse width) = 10, then T0 ≒ 109uS; if OR(Setting of output pulse
width) = 800, then To ≒ 8.72mS

.Output waveform :

(1).Pn (Output frequency) = 200, Rs = 1 (1/1000), OR (Output pulse width) = 10 :

(2).Pn (Output frequency) = 200, Rs = 1 (1/1000), OR (Output pulse width) = 800 :

NC Positioning Instructions I

7-132

FUN140
HSPSO

HIGH SPEED PULSE OUTPUT INSTRUCTION
 (Brief description on function)

FUN140
HSPSO

Ps : The Pulse Output (0～3) selection
0:Y0 & Y1
1:Y2 & Y3
2:Y4 & Y5
3:Y6 & Y7

SR : Positioning program starting register.
WR : Starting working register of instruction operation,

total 7 registers, can not used in any other part of
program.

Range

Ope-
rand

HR DR ROR K
R0
∣

R3839

D0
∣

D4095

R5000
∣

R8071

2
∣

256

Ps 0～3
SR ○ ○ ○
WR ○ ○ ○*

Command descriptions

 The NC positioning program of HSPSO (FUN140) instruction is a program written and edited with text. The
executing unit of program is divided by step (which includes output frequency, traveling distance, and
transferring conditions). For one FUN140 instruction, can program 250 steps of positioning points at the most.
Each step of positioning program requires 9 registers. For detailed application, please refer to chapter 13 “the
NC positioning control of FBs-PLC”.

 The benefits of storing the positioning program in the register is that, while in application which use the MMI
(man machine interface) as the operation console can save the positioning programs to MMI. Whenever the
change of the positioning programs is requested, the download of positioning program can be simply done by
a series of write register commands.

 The NC positioning of this instruction doesn’t provide the linear interpolation function.
 When execution control “EN”=1, if Ps0～3 is not controlled by other FUN140 instruction (the status of

Ps0=M1992, Ps1=M1993, Ps2=M1994, and Ps3=M1995 is ON respectively), it will start to execute from the
next step of positioning point (when goes to the last step, it will be restarted from the first step); if Ps0～3 is
controlled by other FUN140 instruction (the status of Ps0=M1992, Ps1=M1993, Ps2=M1994, and
Ps3=M1995 are OFF), this instruction will wait and acquires the control right of output point immediately right
after other FUN140 release the output.

 When execution control input “EN” =0, it stops the pulse output immediately.
 When output pause “PAU” =1 and execution control was 1, it will pause the pulse output. When output

pause “PAU” =0 and execution control is still 1, it will continue the unfinished pulse output.
 When output abort “ABT”=1, it will halt and stop pulse output immediately. (When the execution control

input “EN” becomes 1 next time, it will restart from the first step of positioning point to execute.)
 While send the output pulse, the output indication “ACT” is ON.
 When there is an execution error, the output indication “ERR” will be ON. (The error code is stored in the

error code register.)
 When the execution of each step of positioning program is completed, the output indication “DN” will be ON.

*** The working mode of Pulse Output must be configured (without setting, Y0～Y7 will be treated as normal
output) to any one of following modes, before the HSPSO instruction can be worked.

U/D Mode: Y0 (Y2, Y4, Y6), as up pulse.
Y1 (Y3, Y5, Y7), as down pulse.

K/R Mode: Y0 (Y2, Y4, Y6), as the pulse out..
Y1 (Y3, Y5, Y7), as the direction.

A/B Mode: Y0 (Y2, Y4, Y6), as A phase pulse.
 Y1 (Y3, Y5, Y7), as B phase pulse.

hThe output polarity for Pulse Output can select to be Normally ON or Normally OFF.
hThe working mode of Pulse Output can be configured by WINPROLADDER in “Output Setup” setting page.

NC Positioning Instructions I

7 -133

FUN141
MPARA

NC POSITIONING PARAMETER VALUE SETTING
(Brief description on function)

FUN141
MPARA

Ps : The pulse output (0～3) selection

SR : Starting register for parameter table; it has 18
parameters totally, and occupy 24 registers.

Range

Ope-
rand

HR DR ROR K
R0
∣

R3839

D0
∣

D4095

R5000
∣

R8071

2
∣

256

Ps 0～3
SR ○ ○ ○

Operation descriptions

hIt is not necessary to use this instruction. if the system default for parameter values is matching what user
demanded, then this instruction is not needed. However, if it needs to change the parameter value
dynamically, this instruction is required.

hThis instruction incorporates with FUN140 or FUN147 for positioning control purpose.

hWhether the execution control input “EN” = 0 or 1, this instruction will be performed.

hWhen there are any errors in parameter value, the output indication “ERR” will be ON. (The error code is
stored in the error code register.)

hFor detailed functional description and usage, please refer to Chapter 11 “The NC positioning control of
FBs-PLC” for explanation.

NC Positioning Instructions I

7-134

FUN142 P
PSOFF

STOP THE HSPSO PULSE OUTPUT
(Brief description on function)

FUN142 P
PSOFF

Ps : 0～3
Enforce the Pulse Output PSOn (n= Ps) to stop.

Command descriptions

 When execution control “EN” =1 or changes from 0→1(P instruction), this instruction will enforce the

assigned number set of HSPSO (High Speed Pulse Output) to stop pulse output.

 While in the application for mechanical original point reset, as soon as reach the original point can use this

instruction to stop the pulse output immediately, so as to make the original point stop at the same position

every time when performing mechanical original point resetting.

 For detailed functional description and usage, please refer to Chapter 11 “The NC positioning control of

FBs-PLC” for explanation.

NC Positioning Instructions I

7 -135

FUN143 P
PSCNV

CONVERT THE CURRENT PULSE VALUE TO DISPLAY VALUE
 (mm, Deg, Inch, PS) (Brief description on function)

FUN143 P
PSCNV

Ps : 0～3; it converts the number of the pulse position to be
the mm (Deg, Inch, PS) that has same unit as the set
value, so as to make current position displayed.

D : Register that stores the current position after
conversion. It uses 2 registers, e.g. if D = D10, which
means D10 is Low Word and D11 is High Word.

Range

Ope-
rand

HR DR ROR K
R0
∣

R3839

D0
∣

D4095

 R5000
∣

 R8071

2
∣

256

Ps 0 ～3
D ○ ○ ○

Command descriptions

 When execution control “En” =1 or changes from 0→1(P instruction), this instruction will convert the

assigned current pulse position (PS) to be the mm (or Deg, Inch, or PS) that has same unit as the set value,

so as to make current position displaying.

 Only when the FUN140 instruction is executed, then it can get the correct conversion value by executing

this instruction.

 For detailed functional description and usage, please refer to Chapter 11 “The NC positioning control of

FBs-PLC” for explanation.

Enable/Disable Instructions

7 -136

FUN145 P
EN

ENABLE CONTROL OF THE INTERRUPT AND PERIPHERAL
FUN145 P

EN

LBL : External input or peripheral label name that to be
enabled.

 When enable control “EN” =1 or changes from 0→1 (P instruction), it allows the external input or peripheral
interrupt action which is assigned by LBL.

 The enabled interrupt label name is as follows:(Please refer the section 9.3 for details)

LBL name Description LBL name Description LBL name Description

HSTAI
HSTA High speed
counter interrupt X4+I

X4 positive edge
interrupt

X10+I
X10 positive edge
interrupt

HSC0I
HSC0 High speed
counter interrupt X4− I

X5 negative edge
interrupt

X10− I
X10 negative edge
interrupt

HSC1I
HSC1 High speed
counter interrupt X5+I

X5 positive edge
interrupt

X11+I
X11 positive edge
interrupt

HSC2I
HSC2 High speed
counter interrupt X5− I

X5 negative edge
interrupt

X11− I
X11 negative edge
interrupt

HSC3I
HSC3 High speed
counter interrupt X6+I

X6 positive edge
interrupt

X12+I
X12 positive edge
interrupt

X0+I
X0 positive edge
interrupt X6− I

X6 negative edge
interrupt

X12− I
X12 negative edge
interrupt

X0− I
X0 negative edge
interrupt X7+I

X7 positive edge
interrupt

X13+I
X13 positive edge
interrupt

X1+I
X1 positive edge
interrupt X7− I

X7 negative edge
interrupt

X13− I
X13 negative edge
interrupt

X1− I
X1 negative edge
interrupt X8+I

X8 positive edge
interrupt

X14+I
X14 positive edge
interrupt

X2+I
X2 positive edge
interrupt X8− I

X8 negative edge
interrupt

X14− I
X14 negative edge
interrupt

X2− I
X2 negative edge
interrupt X9+I

X9 positive edge
interrupt

X15+I
X15 positive edge
interrupt

X3+I
X3 positive edge
interrupt X9− I

X9 negative edge
interrupt

X15− I
X15 negative edge
interrupt

X3− I
X3 negative edge
interrupt

 In practical application, some interrupt signals should not be allowed to work at sometimes, however, it should
be allowed to work at some other times. Employing FUN146 (DIS) and FUN145 (EN) instructions could
attain the above mentioned demand.

 Program example

EN X0+I
M0 145P.

EN

 When M0 changes from 0→1, it allows X0 to send
interrupt when X0 changes from 0→1. CPU can rapidly
process the interrupt service program of X0+I.

Enable/Disable Instructions

7 -137

FUN146 P
DIS

DISABLE CONTROL OF THE INTERRUPT AND PERIPHERAL
FUN146 P

DIS

LBL : Interrupt label intended to disable or peripheral name to
be disabled.

 When prohibit control “EN” =1 or changes from 0→1 (P instruction), it disable the interrupt or peripheral
operation designated by LBL.

 The interrupt label name is as follows:

LBL name Description LBL name Description LBL name Description

HSTAI
HSTA High speed
counter interrupt

X4+I
X4 positive edge
interrupt

X10+I
X10 positive edge
interrupt

HSC0I
HSC0 High speed
counter interrupt

X4− I
X5 negative edge
interrupt

X10− I
X10 negative edge
interrupt

HSC1I
HSC1 High speed
counter interrupt

X5+I
X5 positive edge
interrupt

X11+I
X11 positive edge
interrupt

HSC2I
HSC2 High speed
counter interrupt

X5− I
X5 negative edge
interrupt

X11− I
X11 negative edge
interrupt

HSC3I
HSC3 High speed
counter interrupt

X6+I
X6 positive edge
interrupt

X12+I
X12 positive edge
interrupt

X0+I
X0 positive edge
interrupt

X6− I
X6 negative edge
interrupt

X12− I
X12 negative edge
interrupt

X0− I
X0 negative edge
interrupt

X7+I
X7 positive edge
interrupt

X13+I
X13 positive edge
interrupt

X1+I
X1 positive edge
interrupt

X7− I
X7 negative edge
interrupt

X13− I
X13 negative edge
interrupt

X1− I
X1 negative edge
interrupt

X8+I
X8 positive edge
interrupt

X14+I
X14 positive edge
interrupt

X2+I
X2 positive edge
interrupt

X8− I
X8 negative edge
interrupt

X14− I
X14 negative edge
interrupt

X2− I
X2 negative edge
interrupt

X9+I
X9 positive edge
interrupt

X15+I
X15 positive edge
interrupt

X3+I
X3 positive edge
interrupt

X9− I
X9 negative edge
interrupt

X15− I
X15 negative edge
interrupt

X3− I
X3 negative edge
interrupt

 In practical application, some interrupt signals should not be allowed to work at certain situation. To achieve
this, this instruction may be used to disable the interrupt signal.

 Program example

DIS X2+I
M0 146P.

EN

 When M0 changes from 0→1, it prohibits X2 from
sending interrupt when X2 changes from 0→1.

NC Positioning Instructions II

7-138

FUN 147
MHSPO

Multi-Axis High Speed Pulse Output
FUN 147
MHSPO

Gp : Group number (0～1)

SR : Starting register for positioning program
 (example explanation)

WR : Starting register for instruction operation (example
explanation). It controls 9 registers, which the other
program cannot repeat in using.

Range

Ope-
rand

HR DR ROR K
R0
∣

R3839

D0
∣

D3999

R5000
∣

R8071

Gp 0～1
SR ○ ○ ○
WR ○ ○ ○*

 Instruction Explanation

1. The FUN147 (MHSPO) instruction is used to support the linear interpolation for multi-axis motion control, it
consists of the motion program written and edited with text programming. We named every position point as
a step (which includes output frequency, traveling distance, and transfer conditions). Every step of positioning
point owns 15 registers for coding.

2. The FUN147 (MHSPO) instruction can support up to 4 axes for simultaneous linear interpolation; or 2 sets of 2-axis
linear interpolation (i.e. Gp0 = Axes Ps0 & Ps1 ; Gp1 = Axes Ps2 & Ps3)

3. The best benefit to store the positioning program into the registers is that in the case of association with MMI
(Man Machine Interface) to operate settings, it may save and reload the positioning program via MMI when
replacing the molds.

4. When execution control “EN”=1, if the other FUN147/FUN140 instructions to control Ps0～3 are not active
(corresponding status of Ps0=M1992, Ps1=M1993, Ps2=M1994, and Ps3=M1995 will be ON), it will start to
execute from the next step of positioning point (when goes to the last step, it will be restarted from the first
step to perform); if Ps0～3 is controlled by other FUN147/FUN140 instruction (corresponding status of
Ps0=M1992, Ps1=M1993, Ps2=M1994, and Ps3=M1995 would be OFF), this instruction will acquire the pulse
output right of positioning control once the controlling FUN147/FUN140 has released the control right.

5. When execution control input “EN” =0, it stops the pulse output immediately.

6. When output pause “PAU” =1 and execution control “EN” was 1 beforehand, it will pause the pulse output.
When output pause “PAU” =0 and execution control is still 1, it will continue the unfinished pulse output.

7. When output abort “ABT”=1, it stops pulse output immediately. (When the execution control input “EN”
becomes 1 next time, it will restart from the first step of positioning point to execute.)

8. While the pulse is in output transmitting, the output indication “ACT” is ON.

9. When there is execution error, the output indication “ERR” will be ON.
(The error code is stored in the error code register.)

10. When each step of positioning point is complete, the output indication “DN” will be ON.

11. Please refer to Chapter 11 “The NC Positioning Control of FBs-PLC” for further details.

NC Positioning Instructions II

 7-139

FUN148
MPG

MANUAL PULSE GENERATOR FOR POSITIONING
FUN148

MPG

 148. MPG

Execut ion EN Sc : ACT

 Ps :

 Fo :

 Mr :

WR :

Sc ：Source of high speed counter; 0~7

 Ps ：Axis of pulse output; 0~3
 Fo ：Setting of output speed (2 registers)
 Mr ：Setting of multiplier (2 registers)
 Mr+0：Multiplicand (Fa)
 Mr+1：Dividend (Fb)
 WR：Starting address of working registers, it needs

4 registers
＊This instruction can be supported in PLC OS

firmware V4.60 or late

Range

Operand

HR ROR DR K
R0
∣

R3839

R5000
∣

R8071

D0
∣

D3999
16 bit

Sc ○ ○ ○ 0~7
Ps ○ ○ ○ 0~3
Fo ○ ○ ○
Mr ○ ○ ○
WR ○ ○* ○

● Let this instruction be executed in 50mS fixed time interrupt service routine (50MSI)、or by using
the 0.1mS high speed timer to generate 50mS fixed time interrupt service to have accurate repeat
time to sample the pulse input from manual pulse generator. If it comes the input pulses, it will
calculate the number of pulses needing to output according to the setting of multiplier (Mr+0 and
Mr+1), and then outputs the pulse stream in the speed of setting (Fo) during this time interval.
The setting of output speed (Fo) must be fast enough, and the acceleration / deceleration rate
(Parameter 4 and parameter 8 of FUN141 instruction) must be sharp to guarantee it can complete
the sending of pulse stream during the time interval if it is under high multiplier (100 or 200 times)
situation.

● When execution 〝EN〞=1, this instruction will sample the pulse input from manual pulse generator
by reading the current value of assigned high speed counter every time interval; it doesn’t have
any output if it doesn’t have any input pulse; but If it senses the input pulses, it will calculate the
number of pulses needing to output according to the setting of multiplier (Mr+0 and Mr+1), and
then outputs the pulse stream in the speed of setting (Fo) during this time interval.
Number of output pulses = (Number of input pulses × Fa) / Fb

● This instruction also under the control of hardware resource management; it wouldn’t be executed
if the hardware is occupied.

● The output indicator ACT=1 if it outputs the pulses; otherwise ACT=0.
● Please refer to Chapter 11 “The NC Positioning Control of FBs-PLC” for further details.

 …

． Sample pulse input
． Output pu lse s t ream

in the speed of Fo

． Sample pulse input
． Output pu lse s t ream

in the speed of Fo

50mS 50mS

Communication Instructions

7 -140

FUN150
M-BUS

MODBUS MASTER INSTRUCTION
（WHICH MAKES PLC AS THE MODBUS MASTER THROUGH PORT 1~4）

FUN150
M-BUS

Pt ：1~4, specify the communication port being acted
as the Modbus master

SR：Starting register of communication program

WR :Starting register for instruction operation. It controls 8
registers, the other programs can not repeat in using.

Range

Ope-
rand

HR ROR DR K
R0
∣

R3839

R5000
∣

R8071

D0
∣

D4095

Pt 1～4
SR ○ ○ ○
WR ○ ○* ○

Description

1. FUN150 (M-BUS) instruction makes PLC act as Modbus master through Port 1～4, thus it is very easy to
communicate with the intelligent peripheral with Modbus RTU/ASCII protocol.

2. The master PLC may connect with 247 slave stations through the RS-485 interface.

3. Only the master PLC needs to use Modbus RTU/ASCII instruction.

4. It employs the program coding method or table filling method to plan for the data flow controls; i.e. from which
one of the slave station to get which type of data and save them to the master PLC, or from the master PLC
to write which type of data to the assigned slave station. It needs only seven registries to make definition;
every seven registers define one packet of data transaction.

5. When execution control 〝EN〞changes from 0→1 and both inputs Pause “PAU” and Abort “ABT” are 0, and if
Port 1/2/3/4 hasn’t been controlled by other communication instructions [i.e. M1960 (Port1) / M1962 (Port2) /
M1936 (Port3) / M1938 (Port4) = 1], this instruction will control the Port 1/2/3/4 immediately and set the
M1960/M1962/M1936/M1938 to be 0 (which means it is being occupied), then going on a packet of data
transaction immediately. If Port 1/2/3/4 has been controlled (M1960/M1962/M1936/M1938 = 0), then this
instruction will enter into the standby status until the controlling communication instruction completes its
transaction or pause/abort its operation to release the control right (M1960/M1962/M1936/M1938 =1), and
then this instruction will become enactive, set M1960/M1962/M1936/M1938 to be 0, and going on the data
transaction immediately.

6. While in transaction processing, if operation control “ABT” becomes 1, this instruction will abort this
transaction immediately and release the control right (M1960/M1962/M1936/M1938 = 1). Next time, when this
instruction takes over the transmission right again, it will restart from the first packet of data transaction.

7. While〝A/R〞=0，Modbus RTU protocol；〝A/R〞=1，Modbus ASCII protocol。

8. While it is in the data transaction, the output indication “ACT” will be ON.

9. If there is error occurred when it finishes a packet of data transaction, the output indication “DN” & “ERR” will
be ON.

10. If there is no error occurred when it finishes a packet of data transaction, the output indication “DN” will be
ON.

Communication Instructions

7 -141

FUN 151
CLINK

COMMUNICATION LINK INSTRUCTION
(WHICH MAKES PLC ACT AS THE MASTER STATION IN CPU LINK NETWORK

THROUGH PORT 1~4)

FUN 151
CLINK

Pt : Assign the port, 1～4
MD : Communication mode, MD0~MD3
SR : Starting register of communication table

 (see example for its explanation)

WR : Starting register for instruction operation (see
example for its explanation). It controls 8 registers,
the other programs can not repeat in using.

Range

Ope-
rand

HR ROR DR K
R0
∣

R3839

R5000
∣

R8071

D0
∣

D4095

Pt 1～4
 MD 0～3

SR ○ ○ ○
WR ○ ○* ○

Description

● This instruction provides 4 instruction modes MD0～MD3. Of which, three instruction modes MD0～MD2, are
“regular link network”, and the MD3 is the “high speed link network”. The following are the function description of
respective modes.

hMD0 : Master station mode for FATEK CPU LINK.
For any PLC, whose ladder program contains the FUN151:MD0 instruction, will become master
station of FATEK CPU LINK network. The master station PLC will base on the communication
program stored in data registers in which the target station, data type, data length, etc, were
specified to read or write slave station via “FATEK FB-PLC Communication Protocol” command.
With this approach up to 254 PLC stations can share the data each other

hMD1 : Active ASCII data transmission mode.
With this mode, the FUN151 instruction will parse the communication program stored in data
registers and base on the parsing result send the data from port2 to ASCII peripherals (such as
computer, other brand PLC, inverter, moving sign, etc, this kind of device can command by ASCII
message). The operation can set to be (1) transmit only, which ignores the response from
peripherals, (2) transmit and then to receive the response from peripherals. When operate with
mode (2) then the user must base on the communication protocol of peripheral to parsing and
prepare the response message by writing the ladder instructions.

hMD2 : Passive ASCII data receiving mode.
With this mode, the FUN151 will first wait to receive ASCII messages sent by external ASCII
peripherals (such as computer, other brand PLC, card reader, bar code reader, electronic weight,
etc. this kind of device can send ASCII message). Upon receiving the message, the user can base
on the communication protocol of peripheral to parsing and react accordingly. The operation can
set to (1) receive only without responding, or (2) receive then responding. For operation mode (2)
the user can use the table driver method to write a communication program and after received a
message this instruction can base on this communication program automatically reply the
message to peripheral.

hMD3 : Master station mode of FATEK high speed CPU LINK.
The most distinguished difference between this mode and MD0 is that the communication
response of MD3 is much faster than MD0. With The introduction of MD3 mode CPU LINK, The
FATEK PLC can easily to implement the application of distributed control and real time data
monitoring.

Data Movement Instructions II

7 -142

FUN160 D P
RWFR

READ/WRITE FILE REGISTER
FUN160 D P

RWFR

Sa :ENOperation control

Ladder symbol

160DP.RWFR

Sb :

ERR

Read/Write R/W

Increment INC

L :
Pr :

Range Error

Sa: Starting address of data register

Sb: Starting address of file register

Pr : Record pointer register

L : Quantity of register to form a record, 1~511

Sa operand can combine V、Z、P0~P9 for index
addressing.

 Range

Ope-
rand

WX WY WM WS TMR CTR HR IR OR SR ROR DR K XR FR
WX0

∣
WX240

WY0
∣

WY240

WM0
∣

WM1896

WS0
∣

WS984

T0
∣

T255

C0
∣

C255

R0
∣

R3839

R3840
∣

R3903

R3904
∣

R3967

R3968
∣

R4167

R5000
∣

R8071

D0
∣

D4095

V、Z

P0～P9

F0
∣

F8191
Sa ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
Sb ○
Pr ○ ○ ○ ○ ○ ○ ○ ○* ○* ○
L ○ ○* ○ 1~511

Description

● When operation control "EN"=1 or changes from 0→1(P instruction), it will perform the read ("R/W"=1) or
write ("R/W"=0) file register operation. While reading, the content of data registers starting from Sa will be
overwritten by the content of file registers addressed by the base file register Sb and record pointer Pr; while
writing, the content of file registers addressed by the base file register Sb and record pointer Pr will be
overwritten by the content of data registers starting from Sa; L is the operation quantity or record size. The
access of file register adopts the concept of RECORD data structure to implement. For example, Sa=R0,
Sb=F0, L=10, the read/write details shown as below

Sb

Sa
R0 ~ R9

(L=10)

F0 ~ F9
(L=10)

F10 ~ F19
(L=10)

F20 ~ F29
(L=10)

F30 ~ F39
(L=10)

Pr = 0
Pr = 1
Pr = 2
Pr = 3

Data Movement Instructions II

7 -143

FUN160 D P
RWFR

READ/WRITE FILE REGISTER
FUN160 D P

RWFR

● For ladder program application, only this instruction can access the file registers.

● The record pointer will be increased by 1 after execution while pointer control input "INC"=1.

● This instruction will not be executed and error indicator ”ERR" will be 1 while incorrect record size (L=0 or >
511) or the operation out of the file register's range (F0～F8191).

M0
Sa : R0
Sb : F100

L :
Pr :R/W

INC

ERR

50
D0

M10
EN

160P.RWFR

M0
Sa : R0
Sb : F100

L :
Pr :R/W

INC

ERR

50
D0

M10
EN

160P.RWFR

.

When M0 changes from 0 1, if D0 =2, the contents
of file registers F200~F249 will be overwritten by the
content of data registers R0~R49. the record length is
50.
.Pointer will be increased by 1 after operation.

.When M0 changes from 0 1, if D0 = 1, the content
of data registers R0~R49 will be overwritten by the file
registers F150~F199.
.The record pointer will be increased by 1 after
operation.

Data Movement Instructions II

7-144

FUN161P
WR-MP

Write Data Record into the MEMORY_PACK
（Write memory pack）

FUN161P
WR-MP

 S ：Starting address of the source data
 BK：Block number of the MEMORY_PACK，0～1
 Os：Offset of the block
 Pr：Address of the pointer
 L：Quantity of writing，1～128
 WR：Starting address of working registers, it takes 2

registers
 S may combine with V、Z、P0～P9 for indirect addressing

application

Range

Operand

HR ROR DR K XR
R0
∣

R3839

R5000
∣

R8071

D0
∣

D4095

V、Z
P0～P9

S ○ ○ ○ ○
BK 0～1
Os ○ ○ ○ 0～32510
Pr ○ ○* ○
L ○ ○* ○ 1～128

WR ○ ○* ○

● The main purpose of the MEMORY_PACK of FBs series's is used for long term storing of the user's ladder
program, except this, through the FUN161/FUN162 instructions, the MEMORY_PACK can be worked as the
portable MEMORY_PACK for machine working parameters's saving and loading.
When execution control〝EN〞changes from 0→1, it will perform the data writing, where S is the starting
address of the source data, BK is the block number of the MEMORY_PACK to store this writing, Os is the
offset of specified block, Pr is the pointer to point to corresponding data area, L is the quantity of this writing.
The access of MEMORY_PACK manipulation adopts the concept of RECORD data structure to implement
with. The working diagram as shown below :

● When input "INC" = 1, the content of the pointer will be increased by one after the execution of writing, it

points to next record.

MEMORY_PACK

Data Movement Instructions II

7-145

FUN161P
WR-MP

Write Data Record into the MEMORY_PACK
（Write memory pack）

FUN161P
WR-MP

● If the value of L is equal to 0 or greater than 128, or the pointed data area over the range, the output "ERR"
will be 1, it will not perform the writing operation.

● It needs couple of PLC solving scans for data writing and verification; during the execution, the output "ACT"
will be 1; when completing the execution and verification without the error, the output "DN" will be 1; when
completing the execution and verification with the error, the output "ERR" will be 1.
The MEMORY_PACK can be configured to store the user's ladder program or machine's working
parameters, or both. The ladder program can be stored into the block 0 only, but the machine's working
parameters can be stored into block 0 or 1; the memory capacity of each block has 32K Word in total.

 Example program : Writing the record into block 1 of MEMORY_PACK with the different length

DN

ERR

ACT

M105

M103

M104

M1

Pr :

S :

Os :
Bk :

EN

INC
1

D1
0

R0 ACT

DN

ERR
M102

M101

M100

M2

INC

EN

M4

M3

20
R2900

L :
WR:

R2910WR:

D2
50

10000

R100
1Bk :

L :

Os :
Pr :

S :

161P.WR_MP

161P.WR_MP

The RECORD starts from R0,
the length is 20(R0~R19)

Write

Block 1

Head of Block 1

The length is 20
of RECORD 0

The length is 20
of RECORD 1

•
•
•
•
•

Os = 0

Os = 32510

Pr = 0

Pr = 1

Pr = 499The length is 20
of RECORD 499

•
•
•
•

The length is 50
of RECORD 0

Pr = 0

The length is 50
of RECORD 449

Pr = 449

Os = 10000
Os = 9999

The RECORD starts from R100,
the length is 50(R100~R149).

Write

MEMORY_PACK

Data Movement Instructions II

7-146

FUN162 P
RD-MP

Read Data Record from the MEMORY_PACK
（Read memory pack）

FUN162 P
RD-MP

 BK：Block number of the MEMORY_PACK，0～1
 Os：Offset of the block
 Pr：Address of the pointer
 L：Quantity of reading，1～128
 D：Starting address to store the reading record

Range

Operand

HR ROR DR K
R0
∣

R3839

R5000
∣

R8071

D0
∣

D3999

BK 0～1
Os ○ ○ ○ 0～32510
Pr ○ ○* ○
L ○ ○* ○ 1～128
D ○ ○* ○

● If the MEMORY_PACK of the FBs series's has stored the data record written by the FUN161 instruction,
they can be read out for machine's working through this instruction, it will reduce the tuning time for machine
operation.

● When execution control "EN" = 1 or from 0→1(P instruction), it will perform the data reading, where BK is
the block number of the MEMORY_PACK storing the record, Os is the offset of specified block, Pr is the
pointer to point to corresponding data area, L is the quantity of this record, and D is the starting address to
stor this reading of record. The access of MEMORY_PACK manipulation adopts the concept of RECORD
data structure to implement with.
The working diagram as shown below:

The RECORD strats from D,
Read

Block 0 Block 1

Head of Block 0 Head of Block 1

The length is L
 of RECORD 0

The length is L
 of RECORD 0

The length is L
 of RECORD 1

The length is L
 of RECORD 1

The length is L
 of RECORD 2

The length is L
 of RECORD 2

•
•
•
•
•

•
•
•
•
•

Os = 0

Os = 32510

Pr = 0

Pr = 1

Pr = 2

Pr = N

the length is L.

● When input "INC"=1, the content of the pointer will be increased by one after the execution of reading, it

points to next record.

MEMORY_PACK

Data Movement Instructions II

7-147

FUN162 P
RD-MP

Read Data Record from the MEMORY_PACK
（Read memory pack）

FUN162 P
RD-MP

● If the value of L is equal to 0 or greater than 128, or the pointed data area over the range, the output "ERR"
will be 1, it will not perform the reading operation.

● Output will be “ERR” if MEMORY_PACK is empty or data format not correct, and user used FUN162 to read
data from MEMORY_PACK.

 Example program : Reading the record from block 1 of MEMORY_PACK with the different length

 ※ It is necessary that correct data in MEMORY_PACK or this example can’t execute correctly.

ERR
M111

M10

Pr :

D :

Os :
Bk :EN

INC

1

D10
0

R0

ERR
M110

M11

INC

EN

M13

M12

20L :

10000Os :

D :

Pr :
L :

R100
50
D11

Bk : 1

162P.RD_MP

162P.RD_MP

In Line Comparison Instructions

7-148

FUN170 D
=

EQUAL TO COMPARE
（Compare whether Sa is equal to Sb）

FUN170 D
=

 170D. Sa

 Execution EN = Sb

 Sa：Operand A or the starting address of Sa
 Sb：Operand B or the starting address of Sb
 Sa、Sb may combine with V、Z、P0～P9 for indirect

addressing application
 ＊This instruction can be supported in PLC

OS firmware V4.60 or later

Range

Operand

WX WY WM WS TMR CTR HR SR ROR DR K XR
WX0
∣

WX240

WY0
∣

WY240

WM0
∣

WM1896

WS0
∣

WS984

T0
∣

T255

C0
∣

C255

R0
∣

R3839

R3804
∣

R4167

R5000
∣

R8071

D0
∣

D3999

16/ 32 bit
+/- number

V、Z
P0~P9

Sa ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
Sb ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

● When execution input 〝EN〞=1, this instruction will be executed in signed number to compare Sa
with Sb. If Sa=Sb, the output is 1; otherwise the output is 0.

Example 1：

Description: When R0=R2、R4=R6 and M0=1, the output status of Y0 is 1; otherwise it is 0
 R0=R2、R8=R10 and M1=1, the output status of Y1 is 1; otherwise it is 0

Example 2：

Description: When DR600=DR602 or DR604>DR606, after them DR608<DR610 and DR616≧DR618,
or DR612≠DR614 and DR620≦DR622, or M200=1and M201=1, and then M100=1, the
output status of Y10 is 1; otherwise it is 0.

In Line Comparison Instructions

7-149

FUN171 D
>

GREATER THAN COMPARE
（Compare whether Sa is greater than Sb）

FUN171 D
>

 171D. Sa

 Execution EN > Sb

 Sa：Operand A or the starting address of Sa
 Sb：Operand B or the starting address of Sb
 Sa、Sb may combine with V、Z、P0～P9 for indirect

addressing application
 ＊This instruction can be supported in PLC

OS firmware V4.60 or later

Range

Operand

WX WY WM WS TMR CTR HR SR ROR DR K XR
WX0
∣

WX240

WY0
∣

WY240

WM0
∣

WM1896

WS0
∣

WS984

T0
∣

T255

C0
∣

C255

R0
∣

R3839

R3804
∣

R4167

R5000
∣

R8071

D0
∣

D3999

16/ 32 bit
+/- number

V、Z
P0~P9

Sa ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
Sb ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

● When execution input 〝EN〞=1, this instruction will be executed in signed number to compare Sa
with Sb. If Sa>Sb, the output is 1; otherwise the output is 0.

Example 1：

Description: When M10=1、R20 > R22 or M11=1, the output status of Y2 is 1; otherwise it is 0.

Example 2：

Description: When DR600=DR602 or DR604>DR606, after them DR608<DR610 and DR616≧DR618,
or DR612≠DR614 and DR620≦DR622, or M200=1and M201=1, and then M100=1, the
output status of Y10 is 1; otherwise it is 0.

In Line Comparison Instructions

7-150

FUN172 D
<

LESS THAN COMPARE
（Compare whether Sa is less than Sb）

FUN172 D
<

 172D. Sa

 Execution EN < Sb

 Sa：Operand A or the starting address of Sa
 Sb：Operand B or the starting address of Sb
 Sa、Sb may combine with V、Z、P0～P9 for indirect

addressing application
 ＊This instruction can be supported in PLC

OS firmware V4.60 or later

Range

Operand

WX WY WM WS TMR CTR HR SR ROR DR K XR
WX0
∣

WX240

WY0
∣

WY240

WM0
∣

WM1896

WS0
∣

WS984

T0
∣

T255

C0
∣

C255

R0
∣

R3839

R3804
∣

R4167

R5000
∣

R8071

D0
∣

D3999

16/ 32 bit
+/- number

V、Z
P0~P9

Sa ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
Sb ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

● When execution input 〝EN〞=1, this instruction will be executed in signed number to compare Sa
with Sb. If Sa<Sb, the output is 1; otherwise the output is 0.

Example 1：

Description: When M10=1、R20 < R22 or M11=1, the output status of Y2 is 1; otherwise it is 0.

Example 2：

Description: When DR600=DR602 or DR604>DR606, after them DR608<DR610 and DR616≧DR618, or DR612
≠DR614 and DR620≦DR622, or M200=1and M201=1, and then M100=1, the output status of Y10
is 1; otherwise it is 0.

In Line Comparison Instructions

7-151

FUN173 D

< >
NOT EQUAL TO COMPARE

（Compare whether Sa is not equal to Sb）
FUN173 D

< >

 173D. Sa

 Execution EN <> Sb

 Sa：Operand A or the starting address of Sa
 Sb：Operand B or the starting address of Sb
 Sa、Sb may combine with V、Z、P0～P9 for indirect

addressing application
 ＊This instruction can be supported in PLC

OS firmware V4.60 or later

Range

Operand

WX WY WM WS TMR CTR HR SR ROR DR K XR
WX0
∣

WX240

WY0
∣

WY240

WM0
∣

WM1896

WS0
∣

WS984

T0
∣

T255

C0
∣

C255

R0
∣

R3839

R3804
∣

R4167

R5000
∣

R8071

D0
∣

D3999

16/ 32 bit
+/- number

V、Z
P0~P9

Sa ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
Sb ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

● When execution input 〝EN〞=1, this instruction will be executed in signed number to compare Sa
with Sb. If Sa≠Sb, the output is 1; otherwise the output is 0.

Example 1：

Description: When M10=1、R20≠R22 or M11=1, the output status of Y2 is 1; otherwise it is 0.

Example 2：

Description: When DR600=DR602 or DR604>DR606, after them DR608<DR610 and DR616≧DR618,
or DR612≠DR614 and DR620≦DR622, or M200=1and M201=1, and then M100=1, the
output status of Y10 is 1; otherwise it is 0.

In Line Comparison Instructions

7-152

FUN174 D

>=
GREATER THAN OR EQUAL TO COMPARE

（Compare whether Sa is greater than or equal to Sb）
FUN174 D

>=

 174D. Sa

Execution EN >= Sb

 Sa：Operand A or the starting address of Sa
 Sb：Operand B or the starting address of Sb
 Sa、Sb may combine with V、Z、P0～P9 for indirect

addressing application
 ＊This instruction can be supported in PLC

OS firmware V4.60 or later

Range

Operand

WX WY WM WS TMR CTR HR SR ROR DR K XR
WX0
∣

WX240

WY0
∣

WY240

WM0
∣

WM1896

WS0
∣

WS984

T0
∣

T255

C0
∣

C255

R0
∣

R3839

R3804
∣

R4167

R5000
∣

R8071

D0
∣

D3999

16/ 32 bit
+/- number

V、Z
P0~P9

Sa ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
Sb ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

● When execution input 〝EN〞=1, this instruction will be executed in signed number to compare Sa
with Sb. If Sa≧Sb, the output is 1; otherwise the output is 0.

Example 1：

Description: When M10=1、R20≧R22 or M11=1, the output status of Y2 is 1; otherwise it is 0.

Example 2：

Description: When DR600=DR602 or DR604>DR606, after them DR608<DR610 and DR616≧DR618, or DR612
≠DR614 and DR620≦DR622, or M200=1and M201=1, and then M100=1, the output status of Y10
is 1; otherwise it is 0.

In Line Comparison Instructions

7-153

FUN175 D

=<
LESS THAN OR EQUAL TO COMPARE

（Compare whether Sa is less than or equal to Sb）
FUN175 D

=<

 175D. Sa

 Execution EN =< Sb

 Sa：Operand A or the starting address of Sa
 Sb：Operand B or the starting address of Sb
 Sa、Sb may combine with V、Z、P0～P9 for indirect

addressing application
 ＊This instruction can be supported in PLC

OS firmware V4.60 or later

Range

Operand

WX WY WM WS TMR CTR HR SR ROR DR K XR
WX0
∣

WX240

WY0
∣

WY240

WM0
∣

WM1896

WS0
∣

WS984

T0
∣

T255

C0
∣

C255

R0
∣

R3839

R3804
∣

R4167

R5000
∣

R8071

D0
∣

D3999

16/ 32 bit
+/- number

V、Z
P0~P9

Sa ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
Sb ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

● When execution input 〝EN〞=1, this instruction will be executed in signed number to compare Sa
with Sb. If Sa≦Sb, the output is 1; otherwise the output is 0.

Example 1：

Description: When M10=1、R20≦R22 or M11=1, the output status of Y2 is 1; otherwise it is 0.

Example 2：

Description: When DR600=DR602 or DR604>DR606, after them DR608<DR610 and DR616≧DR618, or DR612
≠DR614 and DR620≦DR622, or M200=1and M201=1, and then M100=1, the output status of Y10
is 1; otherwise it is 0.

Other Instructions

 7 -154

FUN190
STAT

READ SYSTEM STATUS
FUN190

STAT

 190.STAT

Execut ion EN Gp :

 D :

Range

Operand

HR ROR DR K
R0
∣

R3839

R5000
∣

R8071

D0
∣

D3999

Gp 0~3
D ○ ○* ○

Gp : Specified status group

 0 : Get information of I/O expansion
1~3 : Reserved
D : Starting address of register to store the system status

 D+0 : Quantity of status
 D+1 : Status 1
 …
 D+N: Status N

＊ This instruction can be supported in PLC OS
firmware V4.62 or later

● When execution 〝EN〞=1, this instruction being executed, and if Gp=0, it means to get the
information of I/O expansion modules; total quantity of I/O expansion modules will be stored in D
register, code of I/O expansion module will be stored in D+1~D+N registers in order. Gp=1~3,
reserved for future.

Co de o f I / O
Expa ns io n
Mod u le

Nam e o f I / O
Expa ns io n M odu l e

Co de o f I / O
Expa ns io n
Mod u le

Nam e o f I / O
Expa ns io n M odu l e

1 FBs -8 X YR 21 FBs -6 T C

2 FBs -8 X 22 FBs -6RT D

3 FBs -8 YR 23 FBs -1 6 TC

4 FBs -1 6X YR 24 FBs -1 6RTD

5 FBs -2 0X 25 FBs -2 T C

6 FBs -1 6 YR 26 FBs -2 A4 TC

7 FBs -2 4X 27 FBs -2 A4RT D

8 FBs -2 4 Y 28 FBs -6 N TC

9 FBs -2 4X YR 29 FBs -1 6N T C (Res e rv ed)

10 FBs -4 0X YR 30 FBs -3 2D G I

11 FBs -6 0X YR 31 FBs -V O M

12 FBs -7 S G1S (Dec ode) 32 FBs -1 LC

13 FBs -7 S G1 H

(N on -d ec o de)

14 FBs -7 S G2S (Dec ode)

15 FBs -7 S G2 H (No n - dec od e)

16 FBs -6 AD

17 FBs -2 DA

18 FBs -4 DA

19 FBs -4 PT

2 0 F B s - 4 A 2 D

Other Instructions

 7 -155

FUN190
STAT

READ SYSTEM STATUS
FUN190

STAT

 Example：There are two I/O expansion modules FBs-2DA + FBs-6AD installed in one system

Description: When M500=1, this instruction being executed, register D200 is used to store the total
quantity of I/O expansion modules, register D201 is used to store the code (17=FBs-2DA)
of first I/O expansion module, register D202 is used to store the code (16=FBs-6AD) of
second I/O expansion module.

Floating Point Instructions

7 -156

FUN200 D P
I F

CONVERSION OF INTEGER TO FLOATING POINT NUMBER
FUN200 D P

I F

S : Starting register of Integer to be converted

D : Starting register to store the result of conversion

 Range

Operand

HR ROR DR K XR
R0
∣

R3839

R5000
∣

R8071

D0
∣

D4095

 16/32
 bit
Integer

V、Z

P0～P9

S ○ ○ ○ ○ ○
D ○ ○* ○ ○

Description

 The format of floating point number of Fatek-PLC follows the IEEE-754 standard. For detail explanation of
the format please refer to 5.3 (Numbering System)…page 5-9 .

 When conversion control "EN" = 1 or has a transition from 0 to 1 (P instruction), will convert the integer data
from S register into D~D+1 32-bits register(floating point number data)

X0 200P.I F

R0S :

D0D :

EN

0 1 0 0 0 0 1 1 0 1 0 0 1 0 0 0 0 000…0

0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0
b0b1b2b3b4b5b6b7b8b9b10b11b12b13b14b15

R0 :

DD0 :

I F

s e e e e e e e e m m m m m m m m mmm…m
b17b18b19b20b21b22b23b24b25b26b27b28b29b30b31 b0b15b16 b14 ~ b1

※ R0 = 200 (0000000011001000)

Integer To Floating

DD0 = 43480000H

Floating Poing Instructions

7 -157

FUN201 D P
F I

CONVERSION OF FLOATING POINT NUMBER TO INTEGER
FUN201 D P

F I

S : Starting register of Integer to be converted

D : Starting register to store the result of conversion

 Range

Operand

HR ROR DR XR
R0
∣

R3839

R5000
∣

R8071

D0
∣

D4095

V、Z

P0～P9

S ○ ○ ○ ○
D ○ ○* ○ ○

Description

 The format of floating point number of Fatek-PLC follows the IEEE-754 standard. For detail explanation of
the format please refer to 5.3 (Numbering System)…page 5-9 .

 When conversion control "EN" = 1 or has a transition from 0 to 1 (P instruction), will convert the floating
point data from S~S+1 32bits register into D register(integer data).

 If the value exceeds the valid range of destination, then do not carry out this instruction, and set the
range-error flag “ERR” as 1 and the D register will be intact.

X2 201P.F I

R20S :

D10D :

ERREN

※ DR20 = 123.45 Normalize 42F6E666H

 Floating To Integer

D10 = 007BH

Floating Point Instructions

7 -158

FUN202 P
FADD

 FLOATING POINT NUMBER ADDITION
FUN202 P

FADD

Sa: Augend

Sb: Addend

D : Destination register to store the results
 of the addition

Sa, Sb, D may combine with V, Z, P0~P9 to
serve indirect addressing

 Range

Operand

HR ROR DR K XR

R0
∣

R3839

R5000
∣

R8071

D0
∣

D4095

 Floating
point

 number

V、Z

P0～P9

Sa ○ ○ ○ ○ ○
Sb ○ ○ ○ ○ ○
D ○ ○* ○ ○

Description

 The format of floating point number of Fatek-PLC follows the IEEE-754 standard. For detail explanation of
the format please refer to 5.3 (Numbering System)…page 5-9 .

 Performs the addition of the data specified at Sa and Sb and writes the results to a specified register D when
the add control input "EN" =1 or from 0 to 1 (P instruction). If the result exceed the range that the floating
point number can be expressed(±3.4*10 3 8) then the error flag FO0 will be set to 1 and the D register will
be intact.

X0
Sa : R0

202P.FADD

Sb : R10

D : R20

ERR

Floating Poing Instructions

7 -159

FUN 203 P
FSUB

 FLOATING POINT NUMBER SUBTRACTION
FUN 203 P

FSUB

Sa :ENSubtraction control

Ladder symbol

203P.FSUB

Sb :

D :

ERR Ranger Error (FO0)

Sa: Minuend

Sb: Subtrahend

D : Destination register to store the results
of the subtraction

Sa, Sb, D may combine with V, Z, P0~P9 to
serve indirect addressing

 Range

Operand

HR ROR DR K XR

R0
∣

R3839

R5000
∣

R8071

D0
∣

D4095

Floating
point

number

V、Z

P0～P9

Sa ○ ○ ○ ○ ○
Sb ○ ○ ○ ○ ○
D ○ ○* ○ ○

Description

 The format of floating point number of Fatek-PLC follows the IEEE-754 standard. For detail explanation of
the format please refer to 5.3 (Numbering System)…page 5-9 .

 Performs the subtraction of the data specified at Sa and Sb and writes the results to a specified register D
when the subtract control input "EN" =1 or from 0 to 1 (P instruction). If the result exceed the range that the
floating point number can be expressed(±3.4*103 8) then the error flag FO0 will be set to 1 and the D
register will be intact.

X0
Sa : R0

203P.FSUB

Sb : R4

D :

ERR

R10

EN

DR0 2 0 0 Floating Point Number :

Floating Point Number :

DR0 4 3 4 8 0 0 0 0 H

4 3 F A 0 0 0 0 H

DR10 C 3 9 6 0 0 0 0 H

DR4 5 0 0 DR4

Floating Point Instructions

7 -160

FUN 204 P
FMUL

 FLOATING POINT NUMBER MULTIPLICATION
FUN 204 P

FMUL

Sa :ENMultiplication control

Ladder symbol

204P.FMUL

Sb :

D :

ERR Ranger Error (FO0)

Sa: Multiplicand

Sb: Multiplier

D : Destination register to store the results
 of the multiplication

Sa, Sb, D may combine with V, Z, P0~P9 to
serve indirect addressing

 Range

Operand

HR ROR DR K XR

R0
∣

R3839

R5000
∣

R8071

D0
∣

D4095

Floating
point

number

V、Z

P0～P9

Sa ○ ○ ○ ○ ○
Sb ○ ○ ○ ○ ○
D ○ ○* ○ ○

Description

 The format of floating point number of Fatek-PLC follows the IEEE-754 standard. For detail explanation of
the format please refer to 5.3 (Numbering System)…page 5-9 .

 Performs the multiplication of the data specified at Sa and Sb and writes the results to a specified register D
when the multiplication control input "EN" =1 or from 0 to 1 (P instruction). If the result exceed the range
that the floating point number can be expressed(±3.4*103 8) then the error flag FO0 will be set to 1 and
the D register will be intact.

M10
Sa : R10

204P.FMUL

Sb : R12

D :

ERR

R14

EN

DR10 1 2 3 . 4 5 Floating Point Number :

Floating Point Number :

DR10 4 2 F 6 E 6 6 6 H

4 4 2 9 A 2 8 F H

DR14 4 7 A 3 9 A E 2 H

DR12 6 7 8 . 5 4 DR12

Floating Poing Instructions

7 -161

FUN 205 P
FDIV

 FLOATING POINT NUMBER DIVISION
FUN 205 P

FDIV

Sa: Dividend

Sb: Divisor

D : Destination register to store the results
 of the division

Sa, Sb, D may combine with V, Z, P0~P9 to
serve indirect addressing

 Range

Operand

HR ROR DR K XR

R0
∣

R3839

R5000
∣

R8071

D0
∣

D4095

Floating
point

number

V、Z

P0～P9

Sa ○ ○ ○ ○ ○
Sb ○ ○ ○ ○ ○
D ○ ○* ○ ○

Description

 The format of floating point number of Fatek-PLC follows the IEEE-754 standard. For detail explanation of
the format please refer to 5.3 (Numbering System) page 5-9 .

 Performs the division of the data specified at Sa and Sb and writes the result to the registers specified by
register D when the division control input "EN" =1 or from 0 to 1 (P instruction). If the result exceed the
range that the floating point number can be expressed(±3.4*103 8) then the error flag FO0 will be set to 1
and the D register will be intact.

X5
Sa : R0

205P.FDIV

Sb : R2

D :

ERR

R4

EN

Floating Point Instructions

7 -162

FUN 206 P
FCMP

 FLOATING POINT NUMBER COMPARE
FUN 206 P

FCMP

Sa: The register to be compared

Sb: The register to be compared

Sa, Sb may combine with V, Z, P0~P9 to serve
indirect addressing.

 Range

Operand

HR ROR DR K XR

R0
∣

R3839

R5000
∣

R8071

D0
∣

D4095

Floating
point

number

V、Z

P0～P9

Sa ○ ○ ○ ○ ○
Sb ○ ○ ○ ○ ○

Description

 The format of floating point number of Fatek-PLC follows the IEEE-754 standard. For detail explanation of
the format please refer to 5.3 (Numbering System) page 5-9 .

 Compares the data of Sa and Sb when the compare control input "EN" =1 or from 0 to 1 (P instruction). If
the data of Sa is equal to Sb, then set FO0 to 1. If the data of Sa>Sb, then set FO1 to 1. If the data of Sa<Sb,
then set FO2 to 1. If the data of Sa < Sb, then set the FO2 to 1.

X0
Sa :

Sb :

R0

R2

206P.FCMP
a=b

a>b

a<b
Y0

EN

2 0 0 . 1 DR0

DR2 2 0 0 . 2

Floating Point Number :

Floating Point Number :

4 3 4 8 1 9 9 A H

4 3 4 8 3 3 3 3 H

DR0

DR2

 From the above example, we first assume the data of DR0 is 200.1 and DR2 is 200.2, and then compare the
data by executing the CMP instruction. The FO0 and FO1 are set to 0 and FO2 (a<b) is set to 1 since a<b.

 If you want to have the compound results, such as≧、≦、< > etc., please send =、< and > results to relay first
and then combine the result from the relays.

Floating Point Instructions

7 -163

FUN 207 P
FZCP

 FLOATING POINT NUMBER ZONE COMPARE
FUN 207 P

FZCP

S : Register for zone comparison

SU : The upper limit value

SL : The lower limit value

S, SU, SL may combine with V, Z, P0~P9 to
serve indirect address application

 Range

Operand

HR ROR DR K XR

R0
∣

R3839

R5000
∣

R8071

D0
∣

D4095

 Floating
 point
 number

V、Z

P0～P9

S ○ ○ ○ ○ ○
Su ○ ○ ○ ○ ○
SL ○ ○ ○ ○ ○

Description

 The format of floating point number of Fatek-PLC follows the IEEE-754 standard. For detail explanation of
the format please refer to 5.3 (Numbering System) page 5-9 .

 When compare control "EN" = 1 or changes from 0 to 1 (P instruction), compares S with upper limit SU and
lower limit SL. If S is between the upper limit and the lower limit (SL≦S≦SU), then set the inside zone flag
"INZ" to 1. If the value of S is greater than the upper limit SU, then set the higher than upper limit flag "S>U"
to 1. If the value of S is smaller then the lower limit SL, then set the lower than lower limit flag "S<L" as 1.

 The upper limit SU should be greater than the lower limit SL. If SU<SL, then the limit value error flag "ERR"
will set to 1, and this instruction will not carry out.

X0
S :

Su :

R10

R12

207P.FZCP
INZ

S>U

S<L

Y0

SL : R14

ERR

EN

 The instruction at left compares the value of
DR10 with the upper and lower limit zones
formed by DR12 and DR14. If the values of
DR10~DR14 are as shown in the diagram at
bottom left, then the result can then be
obtained as at the right of this diagram.

 If want to get the status of out side the zone,
then OUT NOT Y0 may be used, or an OR
operation between the two outputs S>U and
S<L may be carried out, and move the result
to Y0.

Floating Point Instructions

7 -164

FUN 207 P
FZCP

 FLOATING POINT NUMBER ZONE COMPARE
FUN 207 P

FZCP

2 0 0 0 . 2 DR10

DR12

DR14

S

S

Su

L

(Upper limit value)

(Lower limit value)

Before-execution

3 0 0 0 . 3

1 0 0 0 . 1

Floating Point Number :

Floating Point Number :

Floating Point Number :

4 4 F A 0 6 6 6 H

4 5 3 B 8 4 C D H

4 4 7 A 0 6 6 6 H

DR10

DR12

DR14

X0＝ FLOATING ZONE COMPARE Y0 = 1

 Results of execution

Advance Function Instruction

7 -165

FUN 208 P
FSQR

 FLOATING POINT NUMBER SQUARE ROOT
FUN 208 P

FSQR

S : Source register to be taken square root

D : Register for storing result
(square root value)

S, D may combine with V, Z, P0~P9 to serve
indirect address application

 Range

Ope-
rand

HR ROR DR K XR

R0
∣

R3839

R5000
∣

R8071

D0
∣

D4095

Floating
point

number

V、Z

P0～P9

S ○ ○ ○ ○ ○
D ○ ○* ○ ○

Description

 The format of floating point number of Fatek-PLC follows the IEEE-754 standard. For detail explanation of
the format please refer to 5.3 (Numbering System) page 5-9.

 When operation control "EN" = 1 or from 0 to 1(P instruction), take the square root of the data specified by
the S value or S~S+1 register, and store the result into the register specified by D~D+1.

 If the value of S is negative, then the error flag "ERR" will be set to 1, and do not execute the operation.

X0 208P.FSQR

2520.04S :

D0D :

ERREN

Floating Point Instructions

7 -166

FUN 209 P
FSIN

 SIN TRIGONOMETRIC INSTRUCTION
FUN 209 P

FSIN

S :ENOperation control

Ladder symbol
209P.FSIN

D :

ERR S range error

S : Source register to be taken SIN

D : Register for storing result
(SIN value)

S, D may combine with V, Z, P0~P9 to serve
indirect address application.

 Range

Ope-
rand

HR ROR DR K XR

R0
∣

R3839

R5000
∣

R8071

D0
∣

D4095

Integer
16 Bit

 number

V、Z

P0～P9

S ○ ○ ○ ○ ○
D ○ ○* ○ ○

Description

 The format of floating point number of Fatek-PLC follows the IEEE-754 standard. For detail explanation of the
format please refer to 5.3 (Numbering System) page 5 -9 .

 When operation control "EN" = 1 or from 0 to 1 (P instruction), take the SIN value of the angle data specified
by the S register and store the result into the register D~D+1 in floating point number format. The valid range
of the angle is from –18000 to +18000, unit in 0.01 degree.

 If the S value is not within the valid range, then the S value error flag "ERR" will be set to 1, and do not
execute the operation.

X0 209P.FSIN

3000S :

R100D :

ERREN

 At left, the example program gets the SIN value of 30,

 and stores the results the register DR100.

Floating Point Instructions

7 -167

FUN 210 P
FCOS

 COS TRIGONOMETRIC INSTRUCTION
FUN 210 P

FCOS

S :ENOperation control

Ladder symbol
210P.FCOS

D :

ERR S range error

S : Source register to be taken COS

D : Register for storing result
(COS value)

S, D may combine with V, Z, P0~P9 to serve
indirect address application

 Range

Ope-
rand

HR ROR DR K XR

R0
∣

R3839

R5000
∣

R8071

D0
∣

D4095

Integer
16 Bit

number

V、Z

P0～P9

S ○ ○ ○ ○ ○
D ○ ○* ○ ○

Description

 The format of floating point number of Fatek-PLC follows the IEEE-754 standard. For detail explanation of the
format please refer to 5.3 (Numbering System) page 5-9.

 When operation control "EN" = 1 or from 0 to 1 (P instruction), take the COS value of the angle data specified
by the S register and store the result into the register D~D+1 in floating point number format. The valid range
of the angle is from –18000 to +18000, unit in 0.01 degree.

 If the S value is not within the valid range, then the S value error flag "ERR" will be set to 1, and do not
execute the operation.

X0 210P.FCOS

R0S :

R200D :

ERREN

 At left, the example program gets the COS value of 60,
 and stores the results the register DR200.

Floating Point Instructions

7 -168

FUN 211 P
FTAN

 TAN TRIGONOMETRIC INSTRUCTION
FUN 211 P

FTAN

S :ENOperation control

Ladder symbol
211P.FTAN

D :

ERR S range error

S : Source register to be taken TAN

D : Register for storing result
(TAN value)

S, D may combine with V, Z, P0~P9 to serve
indirect address application

 Range

Ope-
rand

HR ROR DR K XR

R0
∣

R3839

R5000
∣

R8071

D0
∣

D4095

Integer
16 Bit

number

V、Z

P0～P9

S ○ ○ ○ ○ ○
D ○ ○* ○ ○

Description

 The format of floating point number of Fatek-PLC follows the IEEE-754 standard. For detail explanation of the
format please refer to 5.3 (Numbering System) page 5-9.

 When operation control "EN" = 1 or from 0 to 1 (P instruction), take the COS value of the angle data specified
by the S register and store the result into the register D~D+1 in floating point number format. The valid range
of the angle is from –18000 to +18000, unit in 0.01 degree.

 If the S value is not within the valid range, then the S value error flag "ERR" will be set to 1, and do not
execute the operation.

M0 211P.FTAN

R0S :

D50D :

ERREN

 At left, the example program gets the TAN value of 45,

 and stores the results the register DD50.

Floating Point Instructions

7 -169

FUN 212 P
FNEG

 CHANGE SIGN OF THE FLOATING POINT NUMBER
FUN 212 P

FNEG

D : Register to be changed sign

D may combine with V, Z, P0~P9 to serve indirect
address application

 Range

Ope-
rand

HR ROR DR XR
R0
∣

R3839

R5000
∣

R8071

D0
∣

D4095

V、Z

P0～P9
D ○ ○* ○ ○

Description

 The format of floating point number of Fatek-PLC follows the IEEE-754 standard. For detail explanation of the
format please refer to 5.3 (Numbering System) page 5 -9 .

 When operation control "EN" = 1 or from 0 to 1 (P instruction), the sign of the floating point number register
specified by D will be toogled.

Programming Example

212P.
FNEG R0

X0
EN

 The instruction at left negates the value of the
DR0 register, and stores it back to DR0.

Floating Point Instructions

7 -170

FUN 213 P
FABS

 FLOATING POINT NUMBER ABSOLUTE VALUE
FUN 213 P

FABS

D : Register to be taken absolute value

D may combine with V, Z, P0~P9 to serve indirect
address application

 Range

Ope-
rand

HR ROR DR XR
R0
∣

R3839

R5000
∣

R8071

D0
∣

D4095

V、Z

P0～P9
D ○ ○* ○ ○

Description

 The format of floating point number of Fatek-PLC follows the IEEE-754 standard. For detail explanation of the
format please refer to 5.3 (Numbering System) page 5 -9 .

 When operation control "EN" = 1 or from 0 to 1 (P instruction), calculate the absolute value of the floating
point number register specified by D, and write it back into the original D register.

Programming Example

213P.
FABS R0

X0
EN

 The instruction at left calculates the absolute
value of the DR0 register, and stores it back in
DR0.

Floating Point Instructions

7-171

FUN 214 P
FLN

 FLOATING POINT NAPIERIAN LOGARITHM, logex or ln(x)
FUN 214 P

FLN

 F2 14P.F LN

 Range

Ope-
rand

HR ROR DR K XR
R0
∣

R3839

R5000
∣

R8071

D0
∣

D3999

Floating
number

V、Z

P0～P9
S ○ ○ ○ ○ ○
D ○ ○* ○ ○

Description

 The format of floating point number of Fatek-PLC follows the IEEE-754 standard of 32-bit.

 When operation control "EN" = 1 or from 0 to 1 (P instruction), take the Napierian logarithm of the data

specified by the S value or S~S+1 register, and store the result into the register specified by D~D+1.

 If the value of S is negative or equal to 0、 invalid indirect addressing、 or over range of the result , the error

flag "ERR" will be set to 1, and not update the value of D~D+1.

 All floating point instructions can’t be executed in interrupt service routine.

Example

․ When M214=1, ca lcu la te the Napier ian logar i thm va lue, i t is DD246 = ln (DD46)

S : Source data or register to be calculated Napierian
logarithm value

D : Register for storing the result

S, D may combine with V, Z, P0~P9 to serve indirect
address application

Operat ion
Contro l EN ERRS :

D :

Floating Point instructions

7-172

FUN 215 P
FEXP

FLOATING POINT NATURE POWER FUNCTION, ex
FUN 215 P

FEXP

 F2 15P.F EXP

 Range

Ope-
rand

HR ROR DR K XR
R0
∣

R3839

R5000
∣

R8071

D0
∣

D3999

Floating
number

V、Z

P0～P9
S ○ ○ ○ ○ ○
D ○ ○* ○ ○

Description

 The format of floating point number of Fatek-PLC follows the IEEE-754 standard of 32-bit.

 When operation control "EN" = 1 or from 0 to 1 (P instruction), calaulate the nature power function of the data

specified by the S value or S~S+1 register, and store the result into the register specified by D~D+1.

 If the value of S is out of range、 invalid indirect addressing、 or over range of the result , the error flag "ERR"

will be set to 1, and not update the value of D~D+1.

 All floating point instructions can’t be executed in interrupt service routine.

Example

․ When M215=1, ca lcu la te the nature power funct ion, i t is DD248 = eD D 4 8

S : Source data or register to be calculated power
function of nature number

D : Register for storing the result

S, D may combine with V, Z, P0~P9 to serve indirect
address application

Operat ion
Contro l EN ERRS :

D :

Floating Point Instructions

7-173

FUN 216 P
FLOG

 FLOATING POINT LOGARITHM, log10x or log(x)
FUN 216 P

FLOG

 F2 16P.F L OG

Range

Ope-
rand

HR ROR DR K XR

R0
∣

R3839

R5000
∣

R8071

D0
∣

D3999

Floating
number

V、Z

P0～P9

S ○ ○ ○ ○ ○
D ○ ○* ○ ○

Description

 The format of floating point number of Fatek-PLC follows the IEEE-754 standard of 32-bit.

 When operation control "EN" = 1 or from 0 to 1 (P instruction), calculate the logarithm value of the data

specified by the S value or S~S+1 register, and store the result into the register specified by D~D+1.

 If the value of S is negative or equal to 0、 invalid indirect addressing、 or over range of the result , the error

flag "ERR" will be set to 1, and not update the value of D~D+1.

 All floating point instructions can’t be executed in interrupt service routine.

Example

․ When M216=1, ca lcu la te the logar i thm va lue, i t is DD250 = log (DD50)

S : Source data or register to be calculated logarithm
value

D : Register for storing the result

S, D may combine with V, Z, P0~P9 to serve indirect
address application

Operat ion
Contro l EN ERRS :

D :

Floating Point instructions

7-174

FUN 217 P
FPOW

 FLOATING POINT POWER FUNCTION, xy
FUN 217 P

FPOW

 F2 17P. FP OW

 Range

Ope-
rand

HR ROR DR K XR
R0
∣

R3839

R5000
∣

R8071

D0
∣

D3999

Floating
number

V、Z

P0～P9
Sy ○ ○ ○ ○ ○
Sx ○ ○* ○ ○ ○
D ○ ○ ○ ○

Description

 The format of floating point number of Fatek-PLC follows the IEEE-754 standard of 32-bit.

 When operation control "EN" = 1 or from 0 to 1 (P instruction), calculate the power function of the exponential

data specified by the Sy、base data specified by the Sx, and store the result into the register specified by

D~D+1.

 If it exists invalid indirect addressing、or over range of the result , the error flag "ERR" will be set to 1, and not

update the value of D~D+1.

 All floating point instructions can’t be executed in interrupt service routine.

Example

․ When M217=1, ca lcu la te the power funct ion, i t is DD252 = DD54D D 5 2

Sy: Source data or reg is te r o f exponent ia l

SX: Source da ta or reg is te r o f base。

D : Reg is te r fo r s to r ing the resu l t

Sy, Sx , D may combine with V, Z, P0~P9 to serve
indirect address application

Operat ion
Contro l EN ERRSy :

Sx :
D :

Floating Point Instructions

7-175

FUN 218 P
FASIN

 FLOATING POINT ARC SINE FUNCTION, sin-1
FUN 218 P

FASIN

 F2 18P.FASI N

 Range

Ope-
rand

HR ROR DR K XR
R0
∣

R3839

R5000
∣

R8071

D0
∣

D3999

Floating
number

V、Z

P0～P9
S ○ ○ ○ ○ ○
D ○ ○* ○ ○

Description

 The format of floating point number of Fatek-PLC follows the IEEE-754 standard of 32-bit.

 When operation control "EN" = 1 or from 0 to 1 (P instruction), calculate the arc sine value of the data
specified by the S value or S~S+1 register, and store the result into the register specified by D~D+1.

 Range of S data : -1~ +1 ; range of D value : -π/2 ~ π/2 (Unit in radian)

 If the value of S is out of range、or invalid indirect addressing, the error flag "ERR" will be set to 1, and not
update the value of D~D+1.

 All floating point instructions can’t be executed in interrupt service routine.

Example

․ When M218=1, ca lcu la te the arc s ine va lue, i t is DD256 = s in - 1 DD56;

DD256(Uni t in rad ian) × 57.295788(180 /π) to acqui re the degree va lue

S : Source data or register to be calculated the arc sine
value

D : Register for storing the result

S, D may combine with V, Z, P0~P9 to serve indirect
address application

Operat ion
Contro l EN ERRS :

D :

Floating Point instructions

7-176

FUN 219 P
FACOS

FLOATING POINT ARC COSINE FUNCTION, cos-1
FUN 219 P

FACOS

 F2 19P.FAC OS

 Range

Ope-
rand

HR ROR DR K XR
R0
∣

R3839

R5000
∣

R8071

D0
∣

D3999

Floating
number

V、Z

P0～P9

S ○ ○ ○ ○ ○
D ○ ○* ○ ○

Description

 The format of floating point number of Fatek-PLC follows the IEEE-754 standard of 32-bit.

 When operation control "EN" = 1 or from 0 to 1(P instruction), calculate the arc cosine value of the data
specified by the S value or S~S+1 register, and store the result into the register specified by D~D+1.

 Range of S data : -1~ +1 ; range of D value : 0 ~ π(Unit in radian)

 If the value of S is out of range、or invalid indirect addressing, the error flag "ERR" will be set to 1, and not
update the value of D~D+1.

 All floating point instructions can’t be executed in interrupt service routine.

Example

․ When M219=1, ca lcu la te the arc cos ine va lue, i t is DD258 = cos- 1 DD58;

DD258(Uni t in rad ian) × 57.295788(180 /π) to acqui re the degree va lue

S : Source data or register to be calculated the arc
cosine value

D : Register for storing the result

S, D may combine with V, Z, P0~P9 to serve indirect
address application

Operat ion
Contro l EN ERRS :

D :

Floating Point Instructions

7-177

FUN 220 P
FATAN

 FLOATING POINT ARC TANGENT FUNCTION, tan-1
FUN 220 P

FATAN

 F2 20P.FATAN

 Range

Ope-
rand

HR ROR DR K XR
R0
∣

R3839

R5000
∣

R8071

D0
∣

D3999

Floating
number

V、Z

P0～P9
S ○ ○ ○ ○ ○
D ○ ○* ○ ○

Description

 The format of floating point number of Fatek-PLC follows the IEEE-754 standard of 32-bit.

 When operation control "EN" = 1 or from 0 to 1 (P instruction), calculate the arc tangent value of the data
specified by the S value or S~S+1 register, and store the result into the register specified by D~D+1.

 S data is any number ; range of D value : -π/2 ~ π/2 (Unit in radian)

 If it exists invalid indirect addressing, the error flag "ERR" will be set to 1, and not update the value of D~D+1.

 All floating point instructions can’t be executed in interrupt service routine.

Example

․ When M220=1, ca lcu la te the arc tangent va lue, i t is DD260 = tan- 1 DD60;
DD260(Uni t in rad ian) × 57.295788(180 /π) to acqui re the degree va lue

S : Source data or register to be calculated the arc
tangent value

D : Register for storing the result

S, D may combine with V, Z, P0~P9 to serve indirect
address application

Operat ion
Contro l EN ERRS :

D :

