Chapter 8 Step Instruction Description

Structured programming design is a major trend in software design．The benefits are high readability，easy maintenance，convenient updating and high quality and reliability．For the control applications，consisted of many sequential tasks，designed by conventional ladder program design methodology usually makes others hard to maintain． Therefore，it is necessary to combine the current widely used ladder diagrams with the sequential controls made especially for machine working flow．With help from step instructions，the design work will become more efficient，time saving and controlled．This kind of design method that combines process control and ladder diagram together is called the step ladder language．

The basic unit of step ladder diagram is a step．A step is equivalent to a movement（step）in the machine operation where each movement has an output．The complete machine or the overall sequential control process is the combination of steps in serial or parallel．Its step－by－step sequential execution procedure allows others to be able to understand the machine operations thoroughly，so that design，operation，and maintenance will become more effective and simpler．

8．1 The Operation Principle of Step Ladder Diagram

【Example】

【Description】

1．STP Sxxx is the symbol representing a step Sxxx that can be one of $\mathrm{SO} \sim \mathrm{S} 999$ ．When executing the step（status ON），the ladder diagram on the right will be executed and the previous step and output will become OFF．

2．M1924 is on for a scan time after program start． Hence，as soon as ON，the stop of the initial step SO is entered（ $\mathrm{SO} \mathrm{ON} \mathrm{)} \mathrm{while} \mathrm{the} \mathrm{other} \mathrm{steps} \mathrm{are}$ kept inactive，i．e． $\mathrm{Y} 1 \sim \mathrm{Y} 5$ are all OFF．This means M1924 ON \rightarrow SO ON \rightarrow YO ON and YO will remain ON until one of the contacts X 1 or X 2 is ON ．

3．Assume that X 2 is ON first；the path to S 21 will then be executed．
X2 ON $\Rightarrow\left\{\begin{array}{l}\mathrm{S} 21 \mathrm{ON} \\ \text { S0 OFF }\end{array} \Rightarrow\left\{\begin{array}{l}\mathrm{Y} 2 \mathrm{ON} \\ \mathrm{Y} 0 \text { OFF }\end{array}\right.\right.$ Y 2 will remain ON until X 5 is ON ．

4．Assume that X 5 is ON ，the process will move forward to step S23． i．e． $\mathrm{X} 5 \mathrm{ON} \Rightarrow\left\{\begin{array}{l}\mathrm{S} 23 \text { ON } \\ \mathrm{S} 21 \text { OFF }\end{array} \Rightarrow\left\{\begin{array}{l}\mathrm{Y} 4 \mathrm{ON} \\ \mathrm{Y} 2 \text { OFF }\end{array}\right.\right.$
$Y 4$ and $Y 5$ will remain $O N$ until $X 6$ is $O N$ ．
※If X 10 is ON ，then Y 5 will be ON ．
5．Assume that X 6 is ON ，the process will move forward to SO．
i．e．X6 ON $\Rightarrow\left\{\begin{array}{l}\text { S0 ON } \\ \text { S23 OFF }\end{array} \Rightarrow\left\{\begin{array}{l}\text { Y0 ON } \\ \text { Y4，Y5 OFF }\end{array}\right.\right.$
Then，a control process cycle is completed and the next control process cycle is entered．

8.2 Basic Formation of Step Ladder Diagram

(1) Single path

- Step S20 alone moves to step S21 through X0.
- X0 can be changed to other serial or parallel combination of contacts.
(2) Selective divergence/convergence

(3) Simultaneous divergence/convergence

- Step S2O selects an only one path which divergent condition first met. E.g. X2 is ON first, then only the path of step S23 will be executed.
- A divergence may have up to 8 paths maximum.
- X1, X2,, X22 can all be replaced by the serial or parallel combination of other contacts.
- After X0 is ON, step S20 will simultaneously execute all paths below it, i.e. all S21, S22, S23, and so on, are in action.
- All divergent paths at a convergent point will be executed to the last step (e.g. S30, S31 and S32). When X1 is ON, they can then transfer to S 40 for execution.
- The number of divergent paths must be the same as the number of convergent paths. The maximum number of divergence/convergence path is 8 .
(4) Jump
a. The same step loop

- There are 3 paths below step S20 as shown on the left. Assume that X 2 is ON , then the process can jump directly to step S23 to execute without going through the process of selective convergence.
- The execution of simultaneous divergent paths can not be skipped.
b. Different step loop

(5) Closed Loop and Single Cycle
a. Closed Loop

b. Single Cycle

M1924 - X0	
STP S0	
X1	
STP S20	
X2	
STP S21	RST S21

c. Mixed Process

M1924

(6) Combined Application

The maximum number of downward horizontal branch loops of an initial step is 16

8．3 Introduction of Step Instructions：STP，FROM，TO and STPEND

STP Sx ：S $0 \leq \mathrm{Sx} \leqq \mathrm{S} 7$（Displayed in WinProladder）
or
STP Sx ：S0 $\leqq \mathrm{Sx} \leqq \mathrm{S} 7$（Displayed in FP－08）
This instruction is the initial step instruction from where the step control of each machine process can be derived．Up to 8 initial steps can be used in the FBs series，i．e．a PLC can make up to 8 process controls simultaneously．Each step process can operate independently or generate results for the reference of other processes．

【Example 1】 Go to the initial step S0 after each start（ON）

【Example 2】 Each time the device is start to run or the manual button is pressed or the device is malfunction，then the device automatically enters the initial step S0 to standby．

【Description】 XO：Manual Button，MO：Abnormal Contact．
－STP Sxxx ： $220 \leqq$ Sxxx \leqq S999（Displayed in WinProladder）
or
STP Sxxx ：S20 \leqq Sxxx \leqq S999（Displayed in FP－08）

This instruction is a step instruction，each step in a process represents a step of sequence．If the status of step is ON then the step is active and will execute the ladder program associate to the step．

【Example】

【Description】1．When ON，the initial step SO is ON and YO is ON ．
2．When transfer condition X 10 is ON （in actual application，the transferring condition may be formed by the serial or parallel combination of the contacts $\mathrm{X}, \mathrm{Y}, \mathrm{M}, \mathrm{T}$ and C ），the step S 20 is activated．The system will automatically turn SO OFF in the current scan cycle and YO will be reset automatically to OFF．
i．e． $\mathrm{X} 10 \mathrm{ON} \Rightarrow\left\{\begin{array}{l}\text { S20 ON } \\ \text { S0 OFF }\end{array} \quad \Rightarrow \begin{cases}\mathrm{X} 1 \mathrm{ON} & \rightarrow \mathrm{Y} 1 \mathrm{ON} \\ \mathrm{X} 2 \mathrm{ON} & \rightarrow \mathrm{Y} 2 \mathrm{ON} \\ \text { Y0 OFF }\end{cases}\right.$
3．When the transfer condition X 11 is ON ，the step S 0 is $\mathrm{ON}, \mathrm{Y} 0$ is ON and $\mathrm{S} 20, \mathrm{Y} 1$ and Y 2 will turn OFF at the same time．
i．e． $\mathrm{X} 11 \mathrm{ON} \Rightarrow\left\{\begin{array}{ll}\text { S0 } & \text { ON } \\ \text { S20 } & \text { OFF }\end{array} \Rightarrow\left\{\begin{array}{l}\text { Y0 ON } \\ \text { Y1 OFF } \\ \text { Y2 OFF }\end{array}\right.\right.$

FROM Sxxx : S0 S 5 Sxx \leqq S999 (Displayed in WinProladder)
or
FROM Sxxx : S0 \leqq Sxxx \leqq S999 (Displayed in FP-08)

The instruction describes the source step of the transfer, i.e. moving from step Sxxx to the next step in coordination with transfer condition.

【Example】

【Description】: 1. When ON, the initial step SO is ON . If XO is ON , then YO will be ON .
2. When $S 0$ is $O N$: a. if $X 1$ is $O N$, then step $S 20$ will be $O N$ and $Y 1$ will be $O N$.
b. if X 2 is ON , then step S 21 will be ON and Y 2 will be ON .
c. if X 3 is ON , then step S 22 will be ON and Y 3 will be ON .
d. if $\mathrm{X} 1, \mathrm{X} 2$ and X 3 are all ON simultaneous, then step S 20 will have the priority to be ON first and either S21 or S22 will not be ON.
e. if X 2 and X 3 are ON at the same time, then step S 21 will have the priority to be ON first and S22 will not be ON.
3. When S 20 is ON , if X 5 and X 7 are ON at the same time, then step S 23 will be $\mathrm{ON}, \mathrm{Y} 4$ will be ON and S20 and Y 1 will be OFF.
4. When S 21 is ON , if X 4 is ON , then step S 0 will be ON and S 21 and Y 2 will be OFF.
5. When S 22 is ON , if X 6 and X 7 are ON at the same time, then step S 23 will be $\mathrm{ON}, \mathrm{Y} 4$ will be ON and S22 and $Y 3$ will be OFF.
6. When S 23 is ON , if X 8 is ON , then step S 0 will be ON and S 23 and Y 4 will be OFF.
－TO $\mathrm{Sxxx}: \mathrm{S} 0 \leqq \mathrm{Sxxx} \leqq \mathrm{S} 999$（Displayed in WinProladder）
or
TO Sxxx ：S0 \leqq Sxxx \leqq S999（Displayed in FP－08）

This instruction describes the step to be transferred to．

【Example】

【Description】：1．When ON，the initial step SO is ON ．If XO is ON ，then YO will be ON ．
2．When S 0 is ON ：if X 1 is ON ，then steps S 20 and S 21 will be ON simultaneously and Y 1 and Y 2 will also be ON．

3．When $S 21$ is $O N$ ：if $X 2$ is $O N$ ，then step $S 22$ will be $O N, Y 3$ will be $O N$ and $S 21$ and $Y 2$ will be OFF．
4．When S20 and S22 are ON at the same time and the transferring condition X3 is ON，then step S23 will be ON（if X 4 is ON，then Y 4 will be ON ）and S 20 and S 22 will automatically turn OFF and Y 1 and Y3 will also turn OFF．

5．When S23 is ON：if X 5 is ON ，then the process will transfer back to the initial step，i．e．So will be $O N$ and S 23 and Y 4 will be OFF．

STPEND ：（Displayed in WinProladder）
or
STPEND ：（Displayed in FP－08）

This instruction represents the end of a process．It is necessary to include this instruction so all processes can be operated correctly．

A PLC can have up to 8 step processes（ $\mathrm{S} 0 \sim \mathrm{~S} 7$ ）and is able to control them simultaneously．Therefore，up to 8 STPEND instructions can be obtained．

【Example】

【Description】 When ON，the 8 step processes will be active simultaneously．

8.4 Notes for Writing a Step Ladder Diagram

【Notes】

- In actual applications, the ladder diagram can be used together with the step ladder.
- There are 8 steps, $\mathrm{S} 0 \sim \mathrm{~S} 7$, that can be used as the starting point and are called the "initial steps".

When PLC starts operating, it is necessary to activate the initial step. The M1924 (the first scan ON signal) provided by the system may be used to activate the initial step.

Except the initial step, the start of any other steps must be driven by other step.

- It is necessary to have an initial step and the final STPEND instruction in a step ladder diagram to complete a step process program.
- There are 980 steps, S20~S999, available that can be used freely. However, used numbers cannot be repeated. S500~S999 are retentive(The range can be modified by users), can be used if it is required to continue the machine process after power is off

Basically a step must consists of three parts which are control output, transition conditions and transition targets.

- MC and SKP instructions cannot be used in a step program and the sub-programs. It's recommended that JMP instruction should be avoided as much as possible.
- If the output point is required to stay ON after the step is divergent to other step, it is necessary to use the SET instruction to control the output point and use RST instruction to clear the output point to OFF.
- Looking down from an initial step, the maximum number of horizontal paths is 16 . However, a step is only allowed to have up to 8 branch paths.
- When M1918=0 (default), if a PULSE type function instruction is used in master control loop (FUN 0) or a step program, it is necessary to connect a TU instruction before the function instruction. For example,

When M1918=1, the TU instruction is not required, e.g.:

Example 1

Description 1. Input the condition to initial step SO
2. Input the SO and the divergent conditions of S20, S0 and S21
3. Input the S20
4. Input the S21
5. Input the convergence of S20 and S21
6. Input the S22

Example 2

Description
 1. Input the condition to initial step SO

2. Input the SO and the divergent condition of S20 and S22
3. Input the S20
4. Input the S21
5. Input the S22
6. Input the convergence of S21 and S22
7. Input the S23

Example 3

Description 1. Input the condition to initial step SO
2. Input the S0 and the divergences of S20 and S24
3. Input the S20
4. Input the S20 and the divergences of S21 and S22
5. Input the S21
6. Input the S22
7. Input the convergences of S21 and S22
8. Input the S23
9. Input the S24
10. Input the convergences of S23 and S24

8.5 Application Examples

Example 1 Grasp an object from tank A and put it in Tank B

Example 2 Liquid Stirring Process

- Input Points: Empty limit switch X1

No liquid limit switch X2
Empty limit switch X3
Over-load switch X4
Warning clear button X5
Start button X6
Water washing button X7

- Warning Indicators: Empty dried material Y1

Insufficient liquid Y2
Empty stirring unit Y 3
Motor over-load Y4

- Output Points: Dried material inlet valve Y5

Dried material inlet valve Y6
Liquid inlet valve Y 7
Motor start electromagnetic valve Y8
Clean water inlet valve Y9
Finished product outlet valve Y10

- Weighing Output: CH0 (R3840)
- M1918=0

- Input Points: Pedestrian Push Button X0 Pedestrian Push Button X1
- Output Points: Road Red Light Y0

Road Amber light Y1
Road Green Light Y2
Pedestrian Crossing Red Light Y3
Pedestrian Crossing Green Light Y4

- M1918=0
- Pedestrian Crossing Lights Control Process Diagram

- Pedestrian Crossing Lights Control Program

8.6 Syntax Check Error Codes for Step Instruction

The error codes for the usage of step instruction are as follows:

E51 : TO(S0-S7) must begin with ORG instruction.
E52 : TO(S20-S999) can't begin with ORG instruction.
E53 : TO instruction without matched FROM instruction.
E54 : To instruction must comes after TO, AND, OR, ANDLD or ORLD instruction.
E56 : The instructions before FROM must be AND, OR, ANDLD or ORLD
E57 : The instruction after FROM can't be a coil or a function
E58 : Coil or function must before FROM while in STEP network
E59 : More than 8 TO\# at same network.
E60 : More than 8 FROM\# at same network.
E61 : TO(S0-S19) must locate at first row of the network.
E62 : A contact occupies the location for TO instruction.
E72 : Duplicated TO Sxx instruction.
E73 : Duplicated STP sxx instruction.
E74 : Duplicated FROM sxx instruction.
E76 : STP(S0~S19) without a matched STPEND or STPEND without a matched STP(S0~S19).
E78 : TO(S20~S999), STP (S20~S999) or FROM instructions comes before or without STP(S0~S19).
E79 : STP Sxx or FROM Sxx instructions comes before or without TO Sxx.
E80 : FROM Sxx instruction comes before or without STP Sxx.
E81 : The max. level of branches must <=16.
E82 : The max. no. of branches with same level must <=16.
E83 : Not place the step instruction with TO->STP->FROM sequence.
E84 : The definition of STP\# sequence not follow the TO\# sequence.
E85 : Convergence do not match the corresponding divergence.
E86 : Illegal usage of STP or FROM before convergent with TO instruction.
E87 : STP\# or FROM\# comes before corresponding TO\#.
E88 : During this branch, STP\# or FROM\# comes before the corresponding TO\#.
E89 : FROM\# comes before corresponding TO\# or STP\#.
E90 : Invalid To\# usage in the simultaneous branch.
E91 : Flow control function cannot be used in the step ladder region

