Chapter 18 AIO Module

18.1 FBs-6AD Analog Input Module

FBs-6AD is one of the analog input modules of FATEK FBs series PLC. It provides 6 channels A/D input with 12 or 14 bits effective resolution.. Base on the different jumper settings it can measure the varieties of current or voltage signal. The reading value is represented by a 14-bit value no matter the effective resolution is set to 12 or 14 bits. In order to filter out the field noise imposed on the signal, it also provides the average of sample input function.

18.1.1 Specifications of FBs-6AD

	Item		Specifications	Remark	
Total Ch	annel		6 Channel		
Digital Input Value			-8192~+8191 or 0~16383(14 bits)		
			−2048~+2047 or 0~4095(12 bits)		
Spop	D : 1 ±	10V*	*1.Voltage : -10~10V 5.Current : -20~20mA		
Of	Bipolar*	5V	2. Voltage : −5~5V 6. Current : −10~10mA		
Analog		10V	3. Voltage : 0∼10V 7. Current : 0∼20mA	• It means the default setting	
input	Unipolar	5V	4. Voltage : 0∼5V 8. Current : 0~10mA		
Resolutio	on		14 or 12 bits		
-			Voltage : 0.3mV		
Finest resolution			Current:0.61µA	= Analog input signal / 16383	
I/O Points Occupied		b	6 IR(Input Register)		
Accuracy			Within $\pm 1\%$ of full scale		
Conversi	ion Time		Updated each scan		
Maximur	n absolute	input	Voltage : ±15V (max)	It may cause the destruction to	
signal			Current : ±30mA (max)	hardware if exceeds this value.	
Input res	istance		63.2KΩ (Voltage input) \sim 250Ω (Current input)		
Isolation			Transformer(Power) and photocouple(Signal)		
Indicator(s)			5V PWR LED		
Supply Power			24V-15%/+20%		
Internal Power Consumption		sumption	5V \ 100mA		
Operating Temperature		iture	0 ~ 60 °C		
Storage	Temperatu	ire	-20 ~ 80 °C		
Dimensio	ons		40(W)x90(H)x80(D) mm		

18.1.3 Address Allocation of FBs-PLC Analog Inputs

The I/O addressing of FBs-6AD inputs is beginning from the module closest to main unit, it is orderly numbered as CH0 \sim CH5 (1st module), CH6 \sim CH11 (2nd module), CH12 \sim CH17 (3rd module)..... and increased with occurring order number, i.e. for each module, it adds with 6 and is totally 64 inputs from CH0 \sim CH63, and they are corresponding to the respective internal analogue input register of PLC (so called as IR register) R3840 \sim R3903 as listed in following table. After connecting FBs-6AD to the expansion interface on the PLC, FBs-PLC will automatically detect the number of AD points. WinProladder will automatically detect and calculate the IRs on the system after connecting to the PLC. Users may refer to the I/O Module Number Configuration provided by WinProladder in order to find out the exact I/O address of each expansion module to facilitate programming.

Numeric Input	Content of IR (CH0~CH63)	Input label	
Register (IR)	B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0	Of FBs- 6AD	
IR+0	14/12 bit ; 14-bit , B14~ B15= B13 ; 12-bit, B12~ B15= B11	CH0	
IR +1	14/12 bit ; 14-bit , B14~ B15= B13 ; 12-bit, B12~ B15= B11	CH1	
IR +2	//	CH2	
IR +3	//	СНЗ	FBS-0AD
IR +4	11	CH4	
IR +5	//	CH5	
IR +6	Depends on module type	СНХ	
IR +7	Depends on module type	СНХ	
IR +8	"	СНХ	
IR +9	"	СНХ	

•			
$\tilde{}$. $$		$\tilde{\tilde{\mathbf{I}}}$	Ş
R3896	11	СНХ	•
R3897	//	СНХ	•
R3898	17	СНХ	
R3899	17	СНХ	Other Modules
R3900	"	СНХ	
R3901	"	СНХ	
R3902	Depends on module type	СНХ	
R3903	Depends on module type	СНХ	

18.1.4 FBs-6AD Hardware Description

FBs-6AD contains 3 PCBs overlapping one another. The lowest one is the power supply unit (isolated power supply). The middle one is the I/O board (connectors are on this layer). The upper one is the control board (control/expansion I/O connections) as described below.:

4

(1) External power input terminal : Power supply of analogue circuit for FBs-6AD, the voltage can be 24VDC±20% and should be supplied with 4W of power at least.

- 2 Protecting ground terminal : Connect to the shielding of the signal cable.
- (3) Expansion input cable : It should be connected to the front expansion unit, or the expansion output of main unit.
- (4) Expansion output connector : Provides the connection for next expansion unit.
- (5) Power indicator : It indicates whether the power supply at analogue circuit and external input power source are normal.
- (6) AG Ground : No connection is needed in general; except when the common mode signal is too high. See examples overleaf for details.
- $7 \sim 12$: Input terminal of CH0 \sim CH5.

18.1.4.1 FBs-6AD Hardware Jumper Setting

1. Input code format selection (JP1)

Users can select between unipolar and bipolar codes. The input range of unipolar codes and bipolar codes is 0~16383 and -8192~8191, respectively. The two extreme values of these formats correspond to the lowest and highest input signal values, respectively (see table below). For example, if the input signal type is set to -10V~ +10V, the unipolar code corresponding to the input is 8192 and the bipolar code corresponding to the input is 0 for 0V input. If the input is 10V, the unipolar code corresponding to the input is 16383 and the bipolar code corresponding to the input is 8191. In general, the input code format is selected according to the form of input signals; i.e. unipolar codes for unipolar input signals; and bipolar codes for bipolar input signals. In doing so, their correlations will become more heuristics. Unless it is necessary to make a deviation conversion through FUN33; otherwise, do not select bipolar codes for unipolar input signals (see FUN33 description for details). The format of input codes of all channels is selected from JP1. See above diagram for the location of JP1 :

Input Code Format	nput Code Format JP1 Setting I		Corresponding Input Signals		
Bipolar	<u>a</u>)	$-8192 \sim 8191$	-10V~10V(-20mA~20mA)		
ырыа	JP1 🔳 🔳	-0132 ** 0131	-5V \sim 5V(-20mA \sim 20mA)		
	a ⊃	0 16282	0V \sim 10V(0mA \sim 20mA)		
Unipolar	JP1	0~10383	0V \sim 5V(0mA \sim 10mA)		

2. Input signal form setup (JP2&JP3)

Users can set the input signal form (voltage/current) of individual channels; except the polarity and amplitude which are common. The location of jumpers are tabulated below :

Signal Form	JP3 Setting	JP2 Setting
0~10V or 0~20mA	B 🔳	■ 5V ■ 10V
0~ 5V or 0~ 10mA		■ 5V ■ 10V
-10~+10V or -20~+20mA	₿₩₩₽₽	■ 5V ■ 10V
-5∼ +5V or -10mA∼ +10mA	U □ ■	■ 5V ■ 10V

CH0~CH5 share the JP2 and JP3 jumper, therefore all channels must be of the same type that is one of the four types listed at above table. Only the current/voltage setting can be chosen arbitrary :

3. Voltage or current setting (JP4 \sim JP9)

Signal Type	JP4(CH0) \sim JP9(CH5) Setting
Voltage	
Current	

* The default factory settings of 6AD analogue input module are :

Input code format \rightarrow Bipolar(-8192~+8191)

Input signal type and range \rightarrow Bipolar(-10V ~ +10V)

For those applications that require the setting differ than the above default setting should make some modifications of jumper position according to above tables. While application, besides the setting of jumper should be conducted, the AI module configuration of WinProladder also need to be performed.

18.1.5 FBs-6AD Input Circuit Diagram

18.1.6 FBs-6AD Input Characteristics and Jumper Setting

Users can select the Input ranges of FBs-6AD from the jumpers described above, such as V/I, U/B (I/O codes), U/B (signal form), 5V/10V, etc. The Input signals conversion characteristics of these settings are illustrated below. Users can adjust different Input forms by coordinating the conversion curve with various V/I (voltage/current) Input settings. See Section 18.1.4 for details of V/I settings :

Diagram 1 : Bipolar 10V (20mA) Span

Input	Voltage	$-10V \sim 10V$	Jumper	JP3 JP2 B ■ 5V	 m⊃ JP1 ∎∎∎
Range	Current	$-20mA \sim 20mA$	Setting		 m⊃ JP1 III

Diagram 2 : Bipolar 5V (10mA) Span

Input	Voltage	$-5V \sim 5V$	Jumper	JP3 JP2 В Г Т Т Г 5∨	 ıı ⊃ JP1 ■■
Range	Current	$-10 mA \sim 10 mA$	Setting		 m⊃ JP1 🔳 ■

Diagram 3 : Unipolar 10V (20mA) Span

Input	Voltage	$0V \sim 10V$	Jumper	JP3 JP2 B■■ ■ 5V	 m ⊃ JP1 ∎∎∎
Range	Current	$0 \text{mA} \sim 20 \text{mA}$	Setting		 JP1 III ■

Diagram 4 : Unipolar 5V (10mA) Span

Input	Voltage	$0 V \sim 5 V$	Jumper	JP3 B	JP2 ■ 5V	 ı ⊂ ⊃ JP1 ■■
Range	Current	$0 \text{mA} \sim 10 \text{mA}$	Setting		■ ■ 10V	 m⊃ JP1 🔳 ■

18.1.7 Configuration of Analog Input

For the analog input reading of FBs series PLC, there are 3 kinds of data formats used to represent the reading value in compliance with the variation of the external analog inputs. Also, it supports the average method to improve the drift of the reading value away from the noise interference or unstable original analog signal.

The WinProladder provides the friendly and convenient operation interface for the purpose of analog input configuration. There are "analog input data format", "valid bits", and "number of average" for settings.

The procedures for analog inputs configuration with WinProladder

Click the item "I/O Configuration" which in Project Windows :

• If FBs main unit connects with AD Expansion nodule, then it will auto detect and allotted the system resource(IR).

🚟 I/O Configuration M	C v4.x	×
Utilization	Input Setup Temp. Configuration Al Configuration	
1/0 No. Function		
X0 Undefined		
X1 Undefined	Al Data Format : 🔿 12-bit Format 📀 14-bit Form	nat
X2 Undefined	Al Modules	
X4 Undefined	Position Modulo Name Start Address	
X5 Undefined	Address Valid bit	Times of Average
X6 Undefined	ch0 R3840 14-bit	1
X7 Undefined	ch1 B3841 12.bit 💌	2
X8 Undefined	CH1 113041 12-0K	
X9 Undefined	ch2 R3842 14-bit 💌	3
X10 Undefined	ch3 B3843 12-bit 💌	4
X12 Undefined		
X13 Undefined	ch4 R3844 14-bit 💌	5
X14 Undefined	ch5 R3845 12-bit 💌	6
		·
Y0 Undefined		
Y1 Undefined	•	
•		
	🔜 🗸 Ok 🛛 🗙 Cancel	1.

Description of the configuration screen :

- Al Data Format : All analog inputs can be assigned as 12-bit or 14-bit resolution of data format.
- Al Modules : This window displays the information of installed analog input modules, click the selective module will bring the setting window for valid bits and times of average.
- Al Setup : When the data format is 12-bit resolution, each channel of analog input can be allowed to set the times of average; When the data format is 14-bit resolution, each channel of analog input can be allowed to set the valid bits and times of average.

AI Data Format

• 12-bit resolution with sign representation (-2048 \sim 2047) :

B15	B14	B13	B12	B11	B10	B9	B8	Β7	B6	B5	Β4	В3	B2	B1	B0
B11	B11	B11	B11	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

* B11 = 0----- Positive reading value

1----- Negative reading value

* B15~ B12 = B11

• 12-bit resolution without sign representation (0 \sim 4095) :

B15	B14	B13	B12	B11	B10	В9	B8	B7	B6	В5	Β4	В3	B2	B1	В0
0	0	0	0	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

• 14-bit but valid 12-bit resolution with sign representation (- $8192 \sim 8188$) :

B15	B14	B13	B12	B11	B10	В9	B8	B7	B6	В5	Β4	В3	B2	B1	B0
B13	B13	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0	0

* B13 = 0----- Positive reading value

1----- Negative reading value

 $* \; B15 \! \sim B14 \text{=} \; B13$; $B1 \! \sim B0 \text{=} \; 0$

* In this Data Format, because B1 and B0 are fixed 0 then value change by times of 4.

• 14-bit but valid 12-bit resolution without sign representation ($0 \sim 16380$) :

B15	B14	B13	B12	B11	B10	В9	B8	Β7	B6	B5	B4	В3	B2	B1	B0
0	0	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0	0

*In this Data Format, because B1 and B0 are fixed 0 then value change by time of 4.

• 14-bit resolution with sign representation (-8192 \sim 8191) :

B15	B14	B13	B12	B11	B10	В9	B8	B7	B6	В5	B4	В3	B2	B1	В0
B13	B13	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

* B13 = 0----- Positive reading value

1----- Negative reading value

```
* B15 \sim B14 = B13
```

• 14-bit resolution without sign representation (0 \sim 16383) :

B15	B14	B13	B12	B11	B10	В9	B8	B7	B6	В5	B4	В3	B2	B1	B0
0	0	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

Relative registers of AI configuration

This introduction is for HMI or SCADA User, because they may modify through registers. Winprolader's User can ignore this introduction. When you configure Analog Input format with Winproladder, these value of registers will be finished.

Register	Content	Description
D4042	5612H	all analog inputs are the 12-bit resolution ; it is allowed to set times of average for each channel.
//	5614H	all analog inputs are the 14-bit resolution ; it is allowed to set times of average for each channel.

Register	Content	Description
D4006	B0 = 0	Al channel 0 is valid 12-bit resolution.
54000	B0 = 1	Al channel 0 is valid 14-bit resolution.
"	•	
D4006	B15 = 0	Al channel 15 is valid 12-bit resolution.
21000	B15 = 1	Al channel 15 is valid 14-bit resolution.
D4007	B0 = 0	Al channel 16 is valid 12-bit resolution.
Broor	B0 = 1	Al channel 16 is valid 14-bit resolution.
"	•	
D4007	B15 = 0	Al channel 31 is valid 12-bit resolution.
0-001	B15 = 1	Al channel 31 is valid 14-bit resolution.

Register	Content	Description
D4008	B0 = 0	Al channel 32 is valid 12-bit resolution.
04000	B0 = 1	Al channel 32 is valid 14-bit resolution.
"	•	•
D4008	B15 = 0	Al channel 47 is valid 12-bit resolution.
21000	B15 = 1	Al channel 47 is valid 14-bit resolution.
D4009	B0 = 0	Al channel 48 is valid 12-bit resolution.
DICCO	B0 = 1	Al channel 48 is valid 14-bit resolution.
"	•	•
D4009	B15 = 0	Al channel 63 is valid 12-bit resolution.
2.000	B15 = 1	Al channel 63 is valid 14-bit resolution.

Register	Content	Description					
D4010	$1 \sim 16$	Low byte is used to define the times of average for AI channel 0.					
04010	$1 \sim 16$	gh byte is used to define the times of average for AI channel 1.					
• • • •	••••						
D4041	1~16	Low byte is used to define the times of average for AI channel 62.					
	1~16	High byte is used to define the times of average for AI channel 63.					

% The default of AI data format is 14-bit resolution, valid 12-bit, and times of average is 1.

% The legal setting value for times of average is 1 \sim 16, if it is not the value :

The default for times of average is 1 when it is valid 12-bit resolution. The default for times of average is 8 when it is valid 14-bit resolution.

18.1.8 Tacking on the OFFSET Mode Input

For the process of input for signal source of offset mode (take $4 \sim 20$ mA input for example), the user can set A/D input range to be $0 \sim 20$ mA, convert the IR value to unipolar ($0 \sim 16383$), lessen the offset (4mA) value (16383x4/20=3276), then times the maximum input amount (20mA), and divide by the maximum span (4mA \sim 20mA); and it can acquire the offset input conversion from 4mA \sim 20mA reflect to $0 \sim 16383$, the procedure is as follows :

- a. Set the A/D input range of analogue input module to be $0 \sim 20$ mA.
- b. Add the IR (R3840 \sim R3903) value with * 8192 and then store it into register Rn (the value of Rn is 0 \sim 16383).
- c. Deduct 3276 (16383x $\frac{4}{20}$) from value of register Rn, and store the calculated value back to register Rn; if the value is

negative, clear the content of register Rn to 0 (the value of Rn is 0 \sim 13107).

- d. The value of register Rn times 20 and then divide by 16 (Rn x $\frac{20}{16}$), and it will convert the 4mA~20mA input to range of 0~16383.
- e. To sum up the items from a \sim d, the mathematical equation is as follows :

Offset mode conversion value =
$$[IR+8192(or 0) - (16383 \times \frac{4}{20})] \times \frac{20}{16}$$
; value is $0 \sim 16383$

- % Special to 4~20 mA Offset mode, you can use FUN32 to substitute for processing above, but another offset mode please refer to above processing.
- * note : Step b "Add 8192" is means input code setting in bipolar mode(JP1 setting in position B). If input code setting in unipolar mode (JP1 setting in position U) then you don't have to "Add 8192".

Using Linear Conversion(FUN33) reading on 4 \sim 20mA OFFSET mode

Except using the above mathematical methods and FUN32 to read 4~20mA analog reading conversion, when the OS version is later than 4.08 (including), you may use linear conversion instruction (FUN33) to read 4~20mA conversion input parameters.

 When M0 is "ON", it will continuous perform 6 registers of conversion starting from R0, where R1000 is the starting address of the table of the conversion parameters, and the corresponding values will be stored into R50~R55.

The converted result is in below:

		Ts		
	R1000	3276		
	R1001	16383		
	R1002	0		
	R1003	16383		
	S			D
R0	0		R50	-4094
R1	3000		R51	-345
R2	6000	L 2	R52	3405
R3	9000	~	R53	7155
R4	12000		R54	10904
R5	16383		R55	16383

18.2 FBs-4DA/2DA Analog Output Module

FBs-4DA and FBs-2DA are two of the analog output modules of FATEK FBs series PLC. They provide 4 and 2 channels 14 bits D/A output respectively. Base on the different jumper settings it can provide varieties of current or voltage output signal. The output code can be configured as unipolar or bipolar which makes the relation of output code and real output signal more intuitive. For safety, the output signal will be automatically forced to zero(0V or 0mA) when the module is not serviced by CPU for 0.5 second.

18.2.1 Specifications of FBs-4DA/2DA

	Item		Specifications	Remark
Total Cha	annel		4 Channel (FBs-4DA) 、 2 Channel (FBs-2DA)	
Digital O	utput Value		$-8192 \sim +8191$ (Bipolar) or $0 \sim 16383$ (Unipolar)	
Span	Ripolar*	*10V	*1. Voltage : $-10 \sim 10V$ 5. Current : $-20 \sim 20mA$	
Of	ыроіаі	5V	2. Voltage : $-5 \sim 5V$ 6. Current : $-10 \sim 10$ mA	* : It means the default
Analog	Unipolar	10V	3. Voltage : $0 \sim 10V$ 7. Current : $0 \sim 20mA$	seung
output	Unipolai	5V	4. Voltage : $0 \sim 5V$ 8. Current : $0 \sim 10$ mA	
Resolution			14 bits	
Finest resolution			0.3mV(Voltage) · 0.61µA(Current)	
I/O Points Occupied			4(4DA) or 2(2DA) OR(Output register)	
Accuracy			Within $\pm 1\%$ of full scale	
Conversi	on Time		Updated each scan	
Maximun for resista	n accommo ance loadin	dation g	Voltage : $500\Omega \sim 1M\Omega$ Current : $0\Omega \sim 500\Omega$	The deviation will be enlarged if exceeding this range
Isolation			Transformer(Power) and photocouple(Signal)	
Indicator	(s)		5V PWR LED	
Internal Power Consumption			5V \ 20mA	
Operating Temperature			0~60 ℃	
Storage Temperature			-20∼80 ℃	
External power supply			24V-15%/+20% \ 120mA(4DA) \ 70mA(2DA)	
Dimensions			40(W)x90(H)x80(D) mm	

18.2.2 The Procedure of Using FBs-4DA/2DA Analog Output Module

18.2.3 Address Allocation of FBs-PLC Analog Outputs

FBs-4DA/2DA Provides 4 points of outputs(4DA) or 2 points of outputs(2DA). The I/O addressing of output is beginning from the module closest to main unit; it is orderly numbered as CH0 \sim CH1 (1st module), CH2 \sim CH3 (2nd module), CH4 \sim CH5 (3rd module)..... and increased with occurring order number, which reaches 64 points in total, and they are corresponding to the respective internal analogue output registers (so called OR register) R3904 \sim R3967. User needs only to expand connecting FBs-DA modules through expansion interface, and main unit will automatically detect the quantity of the outputs and send out the value to corresponding output of each DA modules. The following table is detailed OR registers (R3904 \sim R3967) corresponding to the expansion analogue outputs (CH0 \sim CH63). WinProladder will automatically detect and calculate the ORs on the system after connecting to the PLC. Users may refer to the I/O Module Number Configuration provided by WinProladder in order to find out the exact I/O address of each expansion module to facilitate programming.

I/O allocation of FBs-2DA

Numeric Output		Contents (CH0~CH63)	Output lable	
Register (OR)	B15 B14	B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0	Of FBs-2DA	
OR+0	* *	B13 CH0 output value B0	CH0	FBs-2DA
OR+1	* *	CH1 output value	CH1	
OR+2	* *	CH2 output value	СНО	FBs-2DA
OR+3	* *	CH3 output value	CH1	
•	•		•	
$\hat{}$.			$\tilde{}$:	
			•	Other modules

R3966	Depends on module type	СНХ
R3967	Depends on module type	СНХ

* * ----- Unipolar code output $(0 \sim 16383)$, B14 \ B15 = 00 Bipolar code output (-8192 \sim 8191), B14 \ B15 = B13

I/O allocation of FBs-4DA

Numeric Output		Contents (CH0 \sim CH63)	Output lable	
Register (OR)	B15 B14	B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0	Of FBs-4DA	
OR+0	* *	B13 CH0 output value B0	СНО	
OR+1	* *	CH1 output value	CH1	FBs-4DA
OR+2	* *	CH2 output value	CH2	
OR+3	* *	CH3 output value	СНЗ	
· ·	•		· ·	
· ·	•	•		
R3964		Depends on module type	СНХ	> Other modules
R3965		Depends on module type	СНХ	
R3966		Depends on module type	СНХ	
R3967		Depends on module type	СНХ	

18.2.4 FBs-2DA /4DA Hardware Description

- (1) External power input terminal: Power supply of analogue circuit for this module, the voltage can be 24VDC±20% and should be supplied with 4W of power at least.
- 2 Protecting ground terminal : Connect to the shielding signal cable.
- ③ Expansion input cable : It should be connected to the front expansion unit, or the expansion output of main unit.
- (4) Expansion output connector : Provides the connection for next expansion unit.
- 5 Power indicator : It indicates whether the power supply at analogue circuit and external input power source are normal.
- (6) AG Ground : No connection is needed in general; except when the common mode signal is too high. See examples overleaf for details.
- (7) (8) : Output terminal of CH0~CH1.
- (9) (10) : Output terminal of CH2~CH3.

18.2.4.1 FBs-4DA/2DA Hardware Jumper Setting

FBs-4DA/2DA Jumper location

Output code format selection (JP1)

Users can select between unipolar and bipolar codes. The output range of unipolar codes and bipolar codes is 0~16383 and -8192~8191, respectively. The two extreme values of these formats correspond to the lowest and highest output signal values, respectively (see table below). In general, the output code format is selected according to the form of output signals; i.e. unipolar codes for unipolar output signals; and bipolar codes for bipolar output signals. In doing so, their correlations will become more heuristics. Yet, as the format of output code on all channels is selected from JP1, it is the user's choice to select unipolar or bipolar codes if both are used on different channels. See diagram above for location of JP1 :

Output Code Format	JP1 Setting	Output Value Range	Corresponding Input Signals
Bipolar		$-8102 \sim 8101$	-10V~10V(-20mA~20mA)
Брога	B	-019210 0191	-5V \sim 5V(-10mA \sim 10mA)
		0 - 16282	0V \sim 10V(0mA \sim 20mA)
Unipolar	JP1 ■ ■ B	0~10303	0V \sim 5V(0mA \sim 10mA)

Output signal form setup (JPA&JPB)

Signal Form	JPA (voltage/current) Setting	JPB (polarity/amplitude) Setting
0V~10V		■■■ ← B U ■■■ ← 10V 5V
-10V~10V		■■■ ← B U ■■■ ← 10V 5V
$0 V \sim 5 V$	╞━━━╋╌╌╫╋╼╋║╋	■ ■ ■ ← B U ■ ■ ■ ← 10V 5V
$-5V \sim 5V$		■■■ ← B U ■■■ ← 10V 5V
$0 mA \sim 20 mA$		■■■ ← B U ■■■ ← 10V 5V
-20mA \sim 20mA		■ ■ ■ ● B U ■ ■ ■ ● 10V 5V
$0 m A \sim 10 m A$		■ ■ ■ ● ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■
-10mA~10mA		

Users can set the output signal form (voltage/current) of individual channels; except the polarity and amplitude which are common.

18.2.5 FBs-4DA/2DA Output Circuit Diagram

18.2.6 FBs-4DA/2DA Output Characteristics and Jumper Setting

Users can select the output ranges of FBs-4DA/2DA from the jumpers described above, such as V/I, U/B (I/O codes), U/B (signal form), 5V/10V, etc. The Output signals conversion characteristics of these settings are illustrated below. Users can adjust different Output forms by coordinating the conversion curve with various V/I (voltage/current) Output settings. See Section 18.2.4 for details of V/I settings :

Diagram 1 : Bipolar 10V (20mA) Span

Output	Voltage	$-10V \sim 10V$	Jumper		JP1 U B
Range	Current	-20 mA \sim 20mA	Setting		JP1 U B

Diagram 2 : Bipolar 5V (10mA) Span

Output	Voltage	$-5V\sim 5V$	Jumper		JP1 U B
Range	Current	$-10 mA \sim 10 mA$	Setting		JP1 U B

Diagram 3 : Unipolar 10V (20mA) Span

Output	Voltage	$0 V \sim 10 V$	Jumper]←BU	 JP1 U B
Range	Current	$0 \text{mA} \sim 20 \text{mA}$	Setting		 U B JP1

Diagram 4 : Unipolar 5V (10mA) Span

Output	Voltage	$0 V \sim 5 V$	Jumper		JP1 U B
Range	Current	$0 \text{mA} \sim 10 \text{mA}$	Setting		JP1 B B

18.2.7 Tracking on the OFFSET Mode Output

For the process of output for signal source of offset mode (take 4~20mA output for example), when the OS version is later than 4.08 (including), you may use linear conversion instruction (FUN33) to read 4~20mA conversion output parameters.

•When M0 is "ON", it will continuous perform 6 registers of conversion starting from R0, where R1000 is the starting address of the table of the conversion parameters, and the corresponding values will be stored into R50 \sim R55. The converted result is in below:

Ts							
	R1000		0				
	R1001		16383				
	R1002		3276				
	R1003		16383				
	S				D		
R0	0			R50	3276		
R 1	3000			R51	5676		
R2	6000		L	R52	8076		
R3	9000		\neg	R53	10476		
R4	12000			R54	12876		
R5	16383			R55	16383		

18.3 FBs-4A2D Analog Input/Output Module

FBs-4A2D is one of the analog I/O modules of FATEK FBs series PLC. For analog output it provides 2 channels of 14 bit D/A output. Base on the different jumper settings it can provide varieties of current or voltage output signal. The output code can be configured as unipolar or bipolar which makes the relation of output code and real output signal more intuitive. For safety, the output signal will be automatically forced to zero(0V or 0mA) when the module is not serviced by CPU for 0.5 second.

For analog input it provides 4 channels A/D input with 12 or 14 bits effective resolution. Base on the different jumper settings it can measure the varieties of current or voltage signal. The reading value is represented by a 14 bit value no matter the effective resolution is set to 12 or 14 bits The output code also can be configured as unipolar or bipolar which makes the relation of input code and real input signal more intuitive.. In order to filter out the field noise imposed on the signal, it also provides the average of sample input function.

18.3.1 Specifications of FBs-4A2D

Item			Spe	Remark	
Output Channel			2 Channel (2DA)		
Digital Ou	itput Value		-8192 \sim +8191(Bipolar)	or 0 \sim 16383(Unipolar)	
Span	Pipolor*	*10V	*1. Voltage : -10~10V	5. Current : $-20 \sim 20 \text{mA}$	
Of	ырогаг	5V	2. Voltage : −5~5V	6. Current : $-10 \sim 10 \text{mA}$	* : It means the default
Analog	Uninglar	10V	3. Voltage ÷ 0 ∼ 10V	7. Current : 0~20mA	setting
output	Unipolar	5V	4. Voltage ÷ 0∼5V	8. Current : 0~10mA	
Resolution			14 bits		
Finest res	olution		0.3mV(Voltage) 0.61µA(Current)		
I/O Points	Occupied		2 OR(Output register)		
Accuracy			Within $\pm 1\%$ of full scale		
Conversion Time			Updated each scan		
Maximum accommodation for resistance loading		dation	Voltage : $500\Omega \sim 1M\Omega$ Current : $0\Omega \sim 300\Omega$		The deviation will be enlarged if exceeding this range

Analog output specifications

Analog input specifications

Item			Spe	Remark	
Input Channel 4 Channel (4AD)					
District			$-8192 \sim +8191$ or $0 \sim 16383$		
Digital Input Value			-2048~+2047or 0~4095(
Span	Dinelar*	*10V	*1. Voltage : –10∼10V	5. Current : −20~20mA	
Of Analog Input Unipo	ырогаг	5V	2. Voltage : –5∼5V	6. Current : −10~10mA	*: It means the default
	Uninglar	10V	3. Voltage ÷ 0∼10V	7. Current : 0∼20mA	setting
	Unipolai	5V	4. Voltage ÷ 0∼5V	8. Current : 0∼10mA	
Resolution			14 or 12 bit		

Finest resolution	Voltage:0.3mV Current:0.61µA	=Analog Input Signal/ 16383(rounded the third decimal place)
I/O Points Occupied	4 IR(Input register)	
Accuracy	Within $\pm 1\%$ of full scale	
Conversion Time	Updated each scan	
Maximum absolute input signal	Voltage:±15V(max) Current:±30mA(max)	It may cause the destruction to hardware if exceeds this value.
Input resistance	$63.2 \text{K}\Omega (\text{Voltage input}){\scriptstyle\sim}250\Omega(\text{Current Input})$	

General specifications

Isolation	Transformer(Power) and photocouple(Signal)	
Indicator(s)	5V PWR LED	
Internal Power Consumption	5V \ 100mA	
External power supply	24V-15%/+20% \ 100mA	
Operating Temperature	0 ~ 60 °C	
Storage Temperature	-20 ~ 80 °C	
Dimensions	40(W)x90(H)x80(D) mm	

18.3.2 The Procedure of Using FBs-4A2D Analog Input/Output Module

18.3.3 Address Allocation of FBs-PLC Analog Inputs/Outputs

FBs-4A2D offers 4 AD points and 2 DA points. The AD points number starts from the one nearest to the PLC, the number in order is CH0~CH3 (module 1); CH4~CH7 (module 2); CH8~CH11 (module 3); etc, accumulates in serial; i.e. add 4 to each module, the total is 64 points (CH0~CH63) corresponding top the value IRs inside the PLC (R3840~R3903), respectively. In DA point numbering, from the one nearest to the PLC, the number runs from CH0 through to CH63 in serial, the total is 64 points corresponding top the value ORs inside the PLC (R3904~R3967), respectively. After connecting FBs-4A2D to the expansion interface on the PLC, FBs-PLC will automatically detect the number of AD/DA points. WinProladder will automatically detect and calculate the value IRs/ORs on the system after connecting to the PLC. Users may refer to the I/O Module Number Configuration provided by WinProladder in order to find out the exact I/O address of each expansion module to facilitate programming (see I/O Number Configuration, Section 12.6, WinProladder User's Manual for details).

Numeric Output	Content of OR (CH0~CH63)		Output	
Register (OR)	B15 B14	B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0	lable	
OR+0	* *	B13 CH0 output value B0	CH0	
OR+1	* *	CH1 output value	CH1	
OR+2		Depends on module type	СНХ	
OR+3			СНХ	
•	•		•	
$\hat{}$. :	$\tilde{\tilde{r}}$.		$\dot{\tilde{z}}$. \dot{z}	\tilde{z} Other modules
R3966	Depends on module type		СНХ	
R3967		Depends on module type	СНХ	

Address allocation of FBs-4A2D(Analog output)

* * ----- Unipolar code output ($0 \sim 16383$) , B14 \cdot B15 = 00 Bipolar code output (-8192 \sim 8191) , B14 \cdot B15 = B13

Address allocation of FBs-4A2D(Analog input)

Numeric Input	Content of IR (CH0~CH63)		
Register (IR)	B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0		
IR+0	14/12 bit ; 14-bit , B14~ B15= B13 ; 12-bit, B12~ B15= B11	CH0	
IR+1	14/12 bit ; 14-bit , B14~ B15= B13 ; 12-bit, B12~ B15= B11	CH1	FBs-442D
IR+2	//	CH2	
IR+3	//	СНЗ	
•		•	
$\dot{\tilde{f}}$: \tilde{f}		$\tilde{}$ $$ $$	
R3900	Depends on module type	СНХ	
R0000			> Other modules
R3901	Depends on module type	CHX	
R3902	"	СНХ	
R3903	"	СНХ	

18.3.4 FBs-4A2D Hardware Description

FBs-4A2D contains 3 PCBs overlapping one another. The lowest one is the power supply unit (isolated power supply). The middle one is the I/O board (connectors are on this layer). The upper one is the control board (control/expansion I/O connections) as described below.:

Outlook of top view

- (1) External power input terminal : Power supply of analogue circuit for this module, the voltage can be 24VDC±20% and should be supplied with 4W of power at least.
- 2 Protecting ground terminal : Connect to the shielding of signal cable.
- ③ Expansion input cable : It should be connected to the front expansion unit, or the expansion output of main unit.
- (4) Expansion output connector : Provides the connection for next expansion unit.
- (5) Power indicator : It indicates whether the power supply at analogue circuit and external input power source are normal.
- (6) AG Ground : No connection is needed in general; except when the common mode signal is too high. See examples overleaf for details.
- (7) (8) : Output terminal of CH0~CH1.
- (9) (12): Input terminal of CH0~CH3.

18.3.4.1 FBs-4A2D Hardware Jumper Setting

• (Analog output)

1. Output code format selection (JP1)

Users can select between unipolar and bipolar codes. The output range of unipolar codes and bipolar codes is 0~16383 and -8192~8191, respectively. The two extreme values of these formats correspond to the lowest and highest output signal values, respectively (see table below). In general, the output code format is selected according to the form

of output signals; i.e. unipolar codes for unipolar output signals; and bipolar codes for bipolar output signals. In doing so, their correlations will become more heuristics. Yet, as the format of output code on all channels is selected from JP1, it is the user's choice to select unipolar or bipolar codes if both are used on different channels. See diagram above for location of JP1 :

Output Code Format	JP1 Setting	Output Value Range	Corresponding Input Signals
Bipolar		-8192~8191	-10V~10V(-20mA~20mA)
			-5V \sim 5V(-10mA \sim 10mA)
Unipolar		0~16383	0V \sim 10V(0mA \sim 20mA)
			0V \sim 5V(0mA \sim 10mA)

2. Output signal form setup (JPA&JPB)

Users can set the output signal form (voltage/current) of individual channels; except the polarity and amplitude which are common.

Signal Form	JPA (voltage/current) Setting	JPB (polarity/amplitude) Setting
0V~10V		
$-10V \sim 10V$		
$0 V \sim 5 V$		
$-5V \sim 5V$		
0mA~20mA		
-20mA~20mA		
0mA~10mA		
-10mA~10mA		

• (Analog input)

1. Input code format selection (JP1)

Users can select between unipolar and bipolar codes. The input range of unipolar codes and bipolar codes is $0\sim16383$ and $-8192\sim8191$, respectively. The two extreme values of these formats correspond to the lowest and highest input signal values, respectively (see table below). For example, if the input signal type is set to $-10V\sim +10V$, the unipolar code corresponding to the input is 8192 and the bipolar code corresponding to the input is 0 for 0V input. If the input is 10V, the unipolar code corresponding to the input is 8191. In general, the input code format is selected according to the form of input signals; i.e. unipolar codes for unipolar input

signals; and bipolar codes for bipolar input signals. In doing so, their correlations will become more heuristics. Unless it is

necessary to make a deviation conversion through FUN33; otherwise, do not select bipolar codes for unipolar input signals (see FUN33 description for details). The format of input codes of all channels is selected from JP1. See above diagram for the location of JP1 :

Input Code Format	JP1 Setting	Input Value Range	Corresponding Input Signals
Bipolar		-8192~8191	-10V~10V(-20mA~20mA)
ырогаг			-5V \sim 5V(-10mA \sim 10mA)
Unipolar		0~16383	0V \sim 10V(0mA \sim 20mA)
			0V \sim 5V(0mA \sim 10mA)

2. Input signal form setup (JP3&JP4)

Users can set the input signal form (voltage/current) of individual channels; except the polarity and amplitude which are common. The location of jumpers are tabulated below :

Signal Form	JP3 Setting	JP4Setting
0~10V or 0~20mA	∪╔╸╪┼╌┨┰┓╢	■ 5V ■ 10V
0~5V or 0~10mA	B ■	■ 5V ■ 10V
-10~+10V or -20~+20mA		■ 5V ■ 10V
-5~+5V or -10mA~+10mA	в	■ 5V ■ 10V

3. Voltage or current setting (JP5~JP8)

Signal Type	JP5(CH0) \sim JP8(CH3) Setting	
Voltage		
Current		

18.3.6 FBs-4A2D Input/Output Characteristics

Users can select the I/O ranges of FBs-4A2D from the jumpers described above, such as V/I, U/B (I/O codes), U/B (signal form), 5V/10V, etc. The I/O conversion characteristics of these settings are illustrated below. Users can adjust different I/O forms by coordinating the conversion curve with various V/I (voltage/current) I/O settings. See Section 18.3.4 for details of V/I settings.